
SCALABLE COMPUTING

Practice and Experience

Special Issue: New Directions in Cloud and

Grid Computing

Editors: Dana Petcu and Marcin Paprzycki

Volume 12, Number 2, June 2011

ISSN 1895-1767

U
U

NIVERSITATEA DE VEST

DIN TIMISOARA

Editor-in-Chief

Dana Petcu
Computer Science Department
West University of Timisoara
and Institute e-Austria Timisoara
B-dul Vasile Parvan 4, 300223
Timisoara, Romania
petcu@info.uvt.ro

Managinig and

TEXnical Editor

Fr̂ıncu Marc Eduard
Computer Science Department
West University of Timisoara
and Institute e-Austria Timisoara
B-dul Vasile Parvan 4, 300223
Timisoara, , Romania
mfrincu@info.uvt.ro

Book Review Editor

Shahram Rahimi
Department of Computer Science
Southern Illinois University
Mailcode 4511, Carbondale
Illinois 62901-4511
rahimi@cs.siu.edu

Software Review Editor

Hong Shen
School of Computer Science
The University of Adelaide
Adelaide, SA 5005
Australia
hong@cs.adelaide.edu.au

Domenico Talia
DEIS
University of Calabria
Via P. Bucci 41c
87036 Rende, Italy
talia@deis.unical.it

Editorial Board

Peter Arbenz, Swiss Federal Institute of Technology, Zürich,
arbenz@inf.ethz.ch

Dorothy Bollman, University of Puerto Rico,
bollman@cs.uprm.edu

Luigi Brugnano, Università di Firenze,
brugnano@math.unifi.it

Bogdan Czejdo, Fayetteville State University,
bczejdo@uncfsu.edu

Frederic Desprez, LIP ENS Lyon, frederic.desprez@inria.fr

Yakov Fet, Novosibirsk Computing Center, fet@ssd.sscc.ru

Andrzej Goscinski, Deakin University, ang@deakin.edu.au

Janusz S. Kowalik, Gdańsk University, j.kowalik@comcast.net

Thomas Ludwig, Ruprecht-Karls-Universität Heidelberg,
t.ludwig@computer.org

Svetozar D. Margenov, IPP BAS, Sofia,
margenov@parallel.bas.bg

Marcin Paprzycki, Systems Research Institute of the Polish
Academy of Sciences, marcin.paprzycki@ibspan.waw.pl

Lalit Patnaik, Indian Institute of Science, lalit@diat.ac.in

Boleslaw Karl Szymanski, Rensselaer Polytechnic Institute,
szymansk@cs.rpi.edu

Roman Trobec, Jozef Stefan Institute, roman.trobec@ijs.si

Marian Vajtersic, University of Salzburg,
marian@cosy.sbg.ac.at

Lonnie R. Welch, Ohio University, welch@ohio.edu

Janusz Zalewski, Florida Gulf Coast University,
zalewski@fgcu.edu

SUBSCRIPTION INFORMATION: please visit http://www.scpe.org

Scalable Computing: Practice and Experience

Volume 12, Number 2, June 2011

TABLE OF CONTENTS

New Directions in Cloud and Grid Computing:

Using service level agreements in a high-performance computing
environment 164

Roland Kübert and Stefan Wesner

Beyond Clouds – Towards Real Utility Computing 179
Matthias Assel, Lutz Schubert, Daniel Rubio Bonilla and Stefan Wesner

Optimizing Data Distribution in Volunteer Computing Systems using
Resources of Participants 193

Abdelhamid Elwaer, Ian J. Taylor and Omer Rana

HBaseSI: Multi-row Distributed Transactions with Global Strong
Snapshot Isolation on Clouds 209

Chen Zhang and Hans De Sterck

Parallelization of Compute Intensive Applications into Workflows based
on Services in BeesyCluster 227

Pawel Czarnul

DEEPG: Dual Heap Overlay Resource Discovery Protocol for Mobile
Grid 239

Mohamadi Y. Begum and Maluk M. A. Mohamed

Green Desktop-Grids: Scientific Impact, Carbon Footprint, Power
Usage Efficiency 257

Bernhard Schott and Ad Emmen

Hybrid Parallel Programming for Blue Gene/P 265
Mads R. B. Kristensen, Hans H. Happe and Brian Vinter

Research Paper:

Some Geometric Problems on OMTSE Optoelectronic Computer 275
Satish Ch. Panigrahi and Asish Mukhopadhyay

c© SCPE, Timişoara 2011

Scalable Computing: Practice and Experience

Volume 12, Number 2, pp. 164–177. http://www.scpe.org
ISSN 1895-1767

c© 2011 SCPE

USING SERVICE LEVEL AGREEMENTS IN A HIGH-PERFORMANCE COMPUTING
ENVIRONMENT

ROLAND KÜBERT ∗AND STEFAN WESNER †

Abstract. The concept of Service Level Agreements (SLAs) has come to attention particularly in conjunction with Grid
computing. SLAs allow for a controlled collaboration between partners, that is service providers and their customers. SLAs
have originated in the telecommunication industry but have found broad uptake in the Grid computing community, especially
regarding the topics of their automated negotiation, general management and legal implications. High-performance computing
(HPC) providers, however, have not been taking up SLAs yet, even though they often provide not only supercomputer resources
but at the same time access to cluster or grid resources. This might be due to the fact that SLAs are mostly regarded on a per-job
basis, which is not consistent with the contractual model that HPC providers currently use. In this work, we analyze how HPC
providers can implement SLAs and what benefits this brings, proposing the usage of SLAs on a long-term basis. We further present
a software that has been developed to simulate the scheduling of jobs at an HPC provider site using service levels and analyze
how different distributions of service levels between the submitted jobs influence machine usage and average waiting times of jobs.
Finally, we present how an HPC provider can practically implement SLA-based scheduling.

1. Introduction. For High Performance Computing resources scheduling of jobs is still realized in most
cases using simple batch queues. While batch queues like OpenPBS [2], TORQUE [5] or others offer a quite
comprehensive set of functionality for placing jobs in appropriate queues and optimizing the load of the cluster
systems, also across sites, there is no mapping from business level requirements down to the low-level specifica-
tions. Low-level specifications are typical elements of a job description, for example desired number of CPUs,
maximum wall- or run-time. The provision of such low-level properties requires a high level of expertise of the
user and can only be specified if the target platform is predetermined as different node and CPU architectures
require different values. Additionally the number of queues is limited and therefore requirements have to be
mapped to a particular queue. While advanced reservation, allowing a predefined start time, can be specified
the drawback of potentially significantly reduced efficiency due to fragmentation of the schedule is not mapped
to potential business penalties such as dynamically adapted pricing for such requests depending on the concrete
loss in efficiency.

If an HPC provider wants to offer its services as utilities and aims to map different possible flavors of the
services on different queue structures, the following problems can occur:

• Typically the use of certain queues is mapped to Unix credentials and groups. So all users of a certain
group can or cannot use e.g. the express queue. However, depending on time of day or load situations,
the “express queue service” might not be available to the same group of users all the time.
• While queues for specialized nodes (for example with graphics processing units (GPUs) or high memory

nodes) are underutilized and normal nodes are oversubscribed there is no way to allow clients and
providers to agree on special “discounts” for them. An automatic movement from normal to premium
node queues would require interaction with accounting services.
• Customers might want to differentiate quite fine-grained about the treatment of their jobs. In such cases

nowadays manual movement of jobs within the queues to “prioritize” them might be agreed beyond
existing queue structures and group memberships. Such manual interactions cannot scale.
• Not all elements describing the Quality of Service (QoS) or Quality of Experience (QoE) can be mapped

on queue properties and parameters. The overall service covers a wider range of properties such as the
availability of a certain compute environment, application versions and licenses, proper treatment of
data or specific configurations of the cluster system such as “require logical partition to isolate from
other users”.

This limitation that only a few functional parameters can be specified when submitting a job (also reflected
in standards like the Job Service Description Language (JSDL) [1]) means that there is basically no way for the
user to express his requirements on a QoS or QoE level. As an HPC provider is offering a service to users that
is potentially replaceable with services from other providers, it is necessary to bridge the gaps between complex
demands from the user side and simple services that are currently offered in order to ensure continued service
usage.

∗High Performance Computing Center Stuttgart, University of Stuttgart, Stuttgart, Germany, E-mail: kuebert@hlrs.de
†High Performance Computing Center Stuttgart, University of Stuttgart, Stuttgart, Germany, E-mail: wesner@hlrs.de

164

Using service level agreements in a high-performance computing environment 165

As a result a significant amount of work has been spent on realizing SLA frameworks allowing to mutually
agree on the terms of the service between provider and consumer. However, while these frameworks cover well
the necessary steps to realize SLAs also as a legally binding agreement, the concrete content of such an SLA
and more important how these terms can be guaranteed and provided from the service provider side are not
adequately addressed.

So far we have the possibility for the consumer to express the requirements and agree the terms with the
provider but

• terms within the SLA are not on the desired business level but mimic the low-level properties of the
underlying queuing systems and
• the agreement process is typically detached from the underlying infrastructure such as current load

situation of different resources, priority and importance of the consumer in a Customer Relationship
Management (CRM) system and the accounting and billing services.

Consequently there is a gap between the demand of defining business level SLAs and their implementation
using available methods and tools for the management of them on different type of computing facilities ranging
from commodity of the shelf (COTS) clusters over specialized compute systems to cloud computing and storage
systems.

Management systems on the provider side between the SLAs agreed with the consumer and the concrete
physical resources need to interact with a range of different elements within the providers IT infrastructure and
must look beyond individual SLAs to optimize the overall operation of all resources within a HPC computing
service provider.

This work is structured as follows: section 2 analyzes related work, section 3 examines business models for
the provisioning of HPC services, section 4 elaborates on benefits for HPC providers when implementing SLAs
and section 5 describes the advantage of long-term SLAs against typically used short-lived, per-job contrast.
Section 6 transfers the theoretical work from the previous section to a more practical setting by analyzing the
impact of SLAs on resource usage and job waiting time and section 7 addresses the issue of implementing SLA
management in an HPC environment. Finally, section 8 gives and outlook on how the previous findings can be
transferred from HPC to cloud services and section 9 concludes the work.

2. Related work. There are various approaches to the usage of service level agreements for job scheduling.
While they differ in many respects - detail of the presentation, assumed parameters, implementation level, etc.
- they all share the fact that they treat SLAs as agreements on a per-job basis. That means that, for each
job to be submitted, a unique SLA is established before the job can be submitted; an exception to this is the
work of Kübert and Wesner, who propose to use service level agreements as long-term contracts [17]. In [31],
Yarmolenko et al., after having identified the fact that SLA-based scheduling is not researched as intensively as
it could be, investigate the influence of different heuristics on the scheduling of parallel jobs. SLAs are identified
as a means to provide more flexibility, increase resource utilization and to fulfill a larger number of user requests.
Parameters either influence timing (earliest job start time, latest job finish time, job execution time, number of
CPU nodes) or pricing. They present a theoretical analysis of scheduling heuristics and how they are influenced
by SLA parameters and do not investigate how the heuristics might be integrated into an already existing
setup. The same authors identify in [23] the need to provide greater flexibility in service levels offered by
high-performance, parallel, supercomputing resources. In this work they present an abstract architecture for
job scheduling on the grid and come to the conclusion that new algorithms are necessary for efficient scheduling
in order to satisfy SLA terms but that little research has been published in this area. MacLaren et al. come to
a similar conclusion, stating that SLAs are necessary in an architecture supporting efficient job scheduling [20].

SLAs that express a job’s deadline as central parameter for deadline-constrained job admission control have
been investigated by Yeo and Buyya [32]. The main findings were that these SLAs depend strongly on accurate
run time estimates, but that it is difficult to obtain good run time estimates from job traces.

Djemame et al. present a way of using SLAs for risk assessment and management, thereby increasing the
reliability of grids [7]. The proposed solution is discussed in the scope of three use cases: a single-job scenario,
a workflow scenario with a broker that is only active at negotiation-time and a workflow scenario with a broker
that is responsible at run-time. It is claimed that risk assessment leads to fewer SLA violations, thus increasing
profit, and to increased trust into grid technology.

Dumitrescu et al. have explored a specific type of SLAs, usage SLAs, for scheduling of grid-specific work-
loads using the bio informatics BLAST tool with the GRUBER scheduling framework [8]. Usage SLAs are

166 R. Kübert and S. Wesner

characterized by four parameters: a user’s VO and group membership, required processor time and required
disk space. The work analyzes how suitable different scheduling algorithm are. Additionally, it comes to the
conclusion that there is a need for using good grid resource management tools, which should be easy to maintain
and to deploy.

Sandholm describes how a grid, specifically the accounting-driven Swedish national grid, can be made aware
of SLAs [24]. It is presented how the architecture can be extended with SLAs and it is stated the greatest benefit
would be achieved by insisting on formally signed agreements.

A comprehensive overview of resource management systems and the application of SLAs for resource man-
agement and scheduling is given by Seidel et al. [26]. The connection of service level and resource management
to local schedulers is clearly shown as a gap in nearly all solutions.

In summary, it can be said that isolated aspects of the usage of SLAs have partly been investigated in
detail: scheduling algorithms and heuristics, abstract architectures, parameters which are to be used as service
levels, SLA negotiation etc. Gaps, however, can be easily identified: the analysis of the “big picture”, that is
the composition of individual aspects of SLA usage into a complete system and the integration of SLAs and
SLA management with local resource management. This is not only true for the “traditional” field of high
performance and grid computing but can also be extended to the field of cloud computing. Furthermore, SLAs
are solely treated on a per-job basis, the analysis of SLAs as long-term contracts is not covered.

3. HPC Service Provisioning Business Models. The increased importance of modeling and simulation
in many academic disciplines and similarly in industry over the last years is one of the drivers leading to an
increased diversity of the user community for High Performance Computing service providers. Another element
is the hardware development towards multi- and manycore computing systems or GPGPUs making parallelism a
commodity at any desktop. As a result the user community of a typical HPC service provider ranges from entry
level users that have just started parallel programming up to high-end users able to use very large computing
systems with many hundred teraFLOPS up to the petaFLOP scale.

Another dimension for classifying users is their typical workflow in using the HPC resources. Depending on
the research discipline the demand for computing resources can be rather constant or may vary quite significantly
over time. A user with a constant demand is interested in a service that delivers a guaranteed level of capacity
of the computing system and costs that are lower as for a self-operated computing system. A user with a
largely varying computing demand e.g. because he is relying on experimental data demands for an elastic
computing system. Additionally all users change their use profile over time e.g. during development cycles of
their simulation software more short runs are requested whereas during production phases long running jobs
are the major use case.

Beside different job types in terms of scale or duration the expected HPC offer is also determined by the
use case. Users performing open research & development typically operates based on grants with a duration of
several months and years. The condition associated with this kind of access that is typically without costs is
to publish all results obtained at the end of the grant period. The conditions of this kind of offer are typically
defined by the provider for a large class of users and not negotiated bi-laterally. For example there could be a
defined profile for university users, federal project users and large scale research projects detailing the service
level, which resources can be accessed and what kind of applications and tools are available. If two different
users receive a grant of the same type from the options above, their access conditions are completely identical.

Another offer type is a production level offer with bi-lateral agreed conditions and obligations defined
in a legally binding contract and negotiated on a case by case basis. Such an offer is typically applied for
commercial users that are willing to accept higher costs for computing services in order to receive special access
conditions, user tailored environments (e.g. a dedicated file system or queue). Obviously a wide spectrum of
offers in-between these two different extremes are possible such as special agreed conditions for a group of users.

3.1. Provider defined SLAs. Provider defined SLAs or service offers use the available hardware resources
as the starting point for the offer definition. The typical model applied by many HPC service providers is to use
a reduced amount of production hours due to maintenance or loss in utilization in the scheduling system (for
example due to very large computing jobs) per year e.g. 5000-6000 hours instead of the theoretically possible
8760 hours (365 ∗ 24). Additional resources such as application licenses or special hardware are considered
similarly.

Based on the available resources and preallocated shares of a system (e.g. 30% for European Research
projects) for the different system parts and the intended use model of the system an appropriate set of queues

Using service level agreements in a high-performance computing environment 167

are defined for the system. The queue design allows to control the major purpose of the system as capacity or
capability machine, if large scale debugging or scalability test sessions are possible (queues for jobs of large size
for short job duration and reasonable waiting time) or if large jobs should be prioritized. Additionally a set of
constraints are defined on how certain external servers supporting the use of the big computing system should
be used. For example that compilation of software should only be done on login servers, analysis of result data
on dedicated post-processing servers.

Based on the definition of the environment that is offered to the users very different models are still possible
controlling fair access to the computing system. One model deployed widely is to operate the resource in a
competitive manner allowing all users to place their jobs in the different queues and schedule jobs driven by
queue and user priority. Such a model has potentially the problem of overbooking and undetermined waiting
times in queues but realize a quite high level of utilization. The quality of the service experienced by the users
will vary and depends on the arrival process of competing jobs in the queues by other users.

Alternative approaches are to offer dedicated access to a share of the machine for a certain user group or
project for a a given time period (several months or even a year) with more certainty in terms of waiting time
or predictability of job launch but with significantly reduced utilization of the overall system.

The major characteristic of provider defined SLAs is the resource driven viewpoint aiming to define a very
small set of offers for different user groups. Furthermore it is assumed that user demands are (1) well understood
by the HPC provider, (2) are defined by the community or project the user belongs to and (3) the demand is
not depending on the project phase or type of work currently done. These kind of SLAs are not negotiated but
are policies or use models that need to be signed up by the users during the application procedure for accessing
the resources. These conditions apply for all compute jobs submitted during the whole project lifetime.

3.2. User negotiated SLAs. User or user group negotiated SLAs start from the particular demand of
the research or commercial project. These demands expressed on the user domain level reflecting the workflow
and processes applied by the users need to be mapped on the concretely available resources at the provider side.
As such user tailored SLAs are as of now implemented by manually changing the configuration of the HPC
provider environment such offers are limited to a small set of customers.

If part of such a user negotiated SLA are specific guarantees or dedicated access to a decent fraction of the
system the utilization of the system is reduced and is in contradiction to the major goal of the HPC service
provider to achieve the highest possible level of utilization. Consequently such special offers must be associated
with an appropriately increased price reflecting the loss in efficiency. As an example consider the demand to
start compute jobs spanning across 50% of the overall system with a guaranteed start time of less than one
hour. This means that upon submission of such a job under this SLA all jobs running longer than one hour
blocking the part of the system to be used must be terminated and re-started after the large job. The already
used computing time until the last checkpoint is lost and needs to be added to the costs of the large job.

As the loss of such a model can be quite significant and if too many user negotiated access offers have been
agreed the implementation might be impossible (or the risk of violating the SLA would become too high) such
offers are typically limited to a small fraction of the system in the range of 10-20%.

4. Benefits of SLAs for HPC service provisioning. The current operation model for high-end com-
puting resources is conceptually still the same as fifty years ago where users placed a set of punching cards at
the registry desk. The only difference is that users now can submit their compute jobs to a set of different
queues and instead of the human operator the scheduling system is picking the jobs from the different queues
depending on defined policies aiming for an optimized load of the system partially reaching 99% utilization. The
major shortcoming of this approach is that the optimization strategy defined by the queues and the scheduling
system policies is oriented towards a global optimization rather than an individual service offer.

If a user needs a special service (e.g. guaranteed start time of a job during a demonstration, interactive
visualization or exhibition) beyond regular job submission the negotiation is typically done directly with the
system operator and the performed steps are mostly done manually.

The availability of multi-core CPUs will lead to compute nodes with 32 cores and more in the near future, the
rise of GPU-based computing with several hundred “cores” per card allows a reasonable number of applications
to run on a single node. This is particularly true if the application is not targeting for a high-end simulation
e.g. in the area of Computational Fluid Dynamics (CFD) domain with a very fine-grained mesh but more on
exploring the problem space. Other examples are cases where the full simulation has been done before and
now only small changes in geometry are done interactively demanding much less intensive computing to reach

168 R. Kübert and S. Wesner

a stable state again as it is based on the previously achieved results.
Driven by the availability of cloud service providers and emerging products such as the Amazon Cluster

Compute Instances also high-end computing service providers change their offers to be more elastic and realize
a more dynamically changing infrastructure having certain queues available only during specific time periods
or realizing a dynamic allocation of resources to logical partitions depending on the load situations or specific
time bound agreements.

The predominant use of high-end computing services will continue to be highly scalable technical simulations
demanding a large number of compute nodes for exclusive use. However additional use cases have emerged driven
by changes on the hardware level and competition with cloud service providers in particular for small scale
simulations. The exclusive access for a user to one single node might even for compute intensive applications
become a relic of the past. This substantially more complex management model for HPC service providers that
cannot rely anymore on a quite homogeneous user behavior and long running jobs demands for a more complex
management solution for operating their resources. The challenge is to integrate the demands of policies from
different levels such as business policies (e.g. users with highly scalable and long running jobs should experience
a preferred treatment) with more short term policies reacting on the current load situation (e.g. reducing prices
or accepting more small jobs to fill gaps in the current schedule) and the demand of the users on a per-job basis.

The following sections aim to cover in examples the three major use cases driving the need for an SLA-
guaranteed HPC service provision. Abstracting from concrete cases three different cases can be identified:

4.1. Interactive Validation. In many areas simulations have already replaced real experiments or phys-
ical prototypes during the development process. However at certain control points in the process simulation
results have to be verified using physical prototypes. Within the IRMOS project augmented reality techniques
are used to overlay real experimental data like a smoke train in the wind channel with a visualization of trace lines
from the corresponding simulation. This “hybrid” prototype allows experts to directly compare the behavior of
the real prototype with the results of the simulation. Such a design review session typically involving several
people of a development team spread around the globe demands a fixed availability of the wind-tunnel, the
computing resources, the visualization resources, the corresponding network resources and all involved experts,
for example via video-conferencing.

In such a scenario simulation data will be generated continuously by a simulation running on a compute
resource that is directly connected to the visualization resources. The current configuration of the wind channel
like the air speed will be communicated as boundary condition for the simulation, thus the same parameters
for both will be used while the experiment is running. This requires a coordinated and automated provision of
the resources involved in the overall setting.

Such a scenario cannot rely on batch queue-based access as the computing and simulation part is just one
piece in the overall setting. The demand for a co-ordinated availability also opens questions on how penalties
are applied if one of the pieces in the overall setting is failing. For example if the compute resources are not
provided as promised in time and the wind tunnel cannot be used the costs for it still accumulate. This applies
also the other way around if the wind tunnel is not available or fails to communicate the boundary conditions
for the simulations or the network connection is not delivering sufficient bandwidth.

As the resources needed for the full scenario are provided by different organizational entities the different
quality levels needed by each individual contributor need to be put in a formal SLA, covering the terms of
service as well as the agreed penalties in case of failures.

4.2. Guaranteed Environment. As outlined in [30] beside quality constraints there is also a demand to
ensure a certain environment or other procedural constraints such as data handling, security policies or environ-
mental properties (version of the operating system, available Independent Software Vendor (ISV) applications,
etc.).

This is especially necessary for simulations performed as part of an overall design cycle for a complex
product such as a car or airplane. A software environment is frozen for a full development cycle in order to
ensure reproducible simulation results. This fixed environment is typically ranging from operating system over
certain versions of numerical libraries up to application codes. A typical approach to address this requirement
is to have beside a paper-based SLA agreed for a design cycle period a dedicated computing resource with the
requested environment.

Advances in virtualization technologies as well as the possibility to apply different boot images in diskless
cluster environments allow a more flexible treatment. Using such technologies a potentially unlimited number

Using service level agreements in a high-performance computing environment 169

of predefined images, or even user-defined images, might be provided. As not all environments can be provided
on all compute resources there must be a negotiation process between the user and the provider where a certain
environment is demanded (e.g. expressed in a certain SLA bundle such as “Silver”) and a corresponding reply
about the conditions for the different options from the provider side is delivered.

The increased flexibility would allow to offer customized environments not only to large customers asking
for resources for a long time period but also for users looking to meet their peak demands with outsourcing
avoiding tedious customization activities of the environment reducing the entry gap.

4.3. Real-time Constraint Simulations. With the increasing role of simulations in design processes for
complex products the demand to have a time-boxed simulation where results need to be delivered in time have
emerged. This might be a set of simulations exploring a parameter space as input for a meeting of engineers
the other day deciding on the focus for the future (long running simulation jobs). Another possibility is if the
results of one single simulation (or a set of simultaneously running simulations) is the input to support an expert
in taking a decision.

One important application area demanding for such an operation model is individualized patient treatment.
For example in [25] a scenario for using simulations to validate different options to perform a bone implant for
a specific patients is presented. In such cases the expert that needs to make a treatment decision has to ensure
in advance of starting the simulation at a specific compute service provider that the results will be available in
time before the treatment must be executed.

In such a scenario a negotiation with several providers would be started in parallel in order to make a case-
by-case decision to which provider the job will be finally submitted. Such a loose binding to a specific provider
would also require similarly to the scenario in the previous section a guaranteed or user-provided environment
making the different providers interchangeable.

4.4. SLA Service Provision Benefits. From all the scenarios above it becomes clear that a much higher
diversity of the offered services must be expected in the future. The requirements of the different scenarios on
the provider’s infrastructure are quite diverging. Additionally the consumer requirements are contradictory to
the goal of the providers reaching a very high level of utilization of the provided resources.

As a result service providers will need to
• offer a mix of different services in order to combine the benefit of best-effort services (high utilization)

with the benefit of special services (high value and price),
• offer a framework allowing consumers and providers to agree on the specific conditions for the service

and
• actively manage their resources in a way that agreed SLAs are met, resources are most effectively used

and any failures and incidents on the resource level are managed to avoid any impact on the agreed
service levels.

The underpinning assumption presented in this section is that the provision of SLA controlled services
is beneficial for consumers and providers. Consumer can negotiate guarantees and specific properties of the
provided services as needed enabling new use models for high-end computing resources as outlined above. The
provider perspective is clearly driven by business benefits to deliver as a part of the differentiation strategy
specific products rather than aiming for a cost leadership approach. Consequently there is a clear need from the
consumer side as well as a clear motivation from the provider side to deliver also in the HPC domain SLA based
services. In other words the current model where the user needs to fully adapt to the provided environment
and access model is changed to a model where the provider is offering certain possibilities or a kind of toolbox
where the consumer can arrange the service offer according to their needs. Realistically this space of options
needs to be discrete and limited allowing a management of the service offer from the provider side.

5. Using long-term service level agreements for job control. Service level agreements, when they
are used for the scheduling of compute jobs, are normally assumed to be on a per-job basis. That means that an
individual SLA only contains terms for one specific job and a new SLA needs to be established for each job (see
for example [7], [31] and [32]). This may be ideal to investigate the influence of SLAs and parameters specified
therein on the scheduling of jobs in an isolated environment but does not correspond with the reality of how
contracts are handled at HPC providers. At HPC providers, users usually agree to a contract that specifies
charges for computational times and storage for available machines [22]. Jobs are then submitted in accordance
with the acknowledged charges which therefore can be thought of as a long-term contract. This contract is,
however, missing a specification of service levels. There may be some service level-related parameters specified

170 R. Kübert and S. Wesner

- for example the availability of different machines to users and their characteristics, for example CPUs per
compute node and memory size per node, but these are only specified in order to compute the amount finally
billed to the user. By adding service levels to this contract, a long-term service level agreement is formed.

Long-term SLAs add the missing specification of service levels but keep the familiar contract behavior
used by HPC providers intact. A simple specification of priorities, for example, might be realized through the
following service levels:

Bronze Computational time is cheap, but there is no assurance on the scheduling of a job. This corresponds
to the best-effort services provided today at HPC centers.

Silver Moderate prizing for computing time due to prioritized scheduling. Silver jobs can have timing guaran-
tees and might preempt best-effort jobs. The increased prize is justified since guarantees on the job’s
scheduling are given.

Gold High-prized jobs that are only rarely used, for example for urgent computing when computations need
to be started immediately.

In contrast to the current situation the possibility of providing different service levels allows users to po-
tentially have multiple contracts in place in parallel. On job submission time, a user decides which contract
to reference in the submission depending on the current requirements and conditions such as urgency of the
simulation result, load situation of the provider(s) etc. This can be seen as a using the middle way between
using SLAs on dynamic, per-job basis and solely having singular long-term contracts. As opposed to dynamic,
per-job SLAs, this approach reduces the amount of negotiation as only few contracts are in place. Additionally,
it avoids the problem that an urgent job cannot be submitted due to a failed negotiation. This approach is
more flexible than having only singular contracts and allows users to choose necessary priorities depending on
the prize they like to pay.

6. Simulating the scheduling of service level agreements. In the previous sections, we have elab-
orated on the benefits of the usage of SLAs for both the service provider, who can offer a much more diverse
portfolio, and the customer, who can make use of this portfolio and will have certain guarantees assured from
the service provider. As contracts that are established for typical HPC providers at the moment are of a long-
term nature, it is suitable for the SLA-related contractual information to be of long-term nature as well. This
immediately poses a straightforward questions: how can service providers know how the offering of service levels
will work out? To put it another way, service providers, who are obliging themselves to various guarantees and
may even be penalized if these are not met can not just switch from a best-effort scheduling approach to an
implementation using service levels and hope that everything will “just work”. Even though the provider is free
to formulate service levels and to enter these with customers as it sees fit, the results are not foreseeable.

The provision of service levels in high performance computing is a novel approach, therefore the provider
cannot rely on already existing data. Even though data exists that contains real-world workload traces and
even models of these exist1, these traces and models do not include service level data, so another way has to be
found. This way needs to provide answers to different questions, for example:

• What distributions of service levels lead to a good quota of fulfillment, or, what service levels can be
supported without the provider being liable to paying huge penalties?
• What different target functions can be applied and what does each one entail?
• How do different scheduling policies influence the fulfillment of contracts?
• What is the result on the provider’s infrastructure, for example how much is a cluster used?

The right way to answer these questions in a way that does not put the provider in an experimental situation
without its outcomes - possibly huge penalties - being foreseeable is to simulate the different service levels the
provider envisions. The arrival, scheduling and computation of jobs at an HPC provider’s site can be easily
simulated with a discrete-event simulation, which represents a system as a chronological series of events.

Jobs arrive at a certain, discrete point in time and are scheduled. Time is advanced and the jobs are finally
run on certain resources until they are finished, at which point in time they leave the system. All this can be
modeled easily with different events, for example job arrival, computation start and computation end. Many
tools for generic discrete-event simulations exist, for example SimJava [11], Tortuga [13] or SimPy [27], as well
as tools for specialized applications, for example the GridSim Toolkit for the simulation of scheduling for parallel
and distributed computing [28].

1The Parallel Workloads Archive at http://www.cs.huji.ac.il/labs/parallel/workload/ is a good source for both of these.

Using service level agreements in a high-performance computing environment 171

The addition of service levels into these simulations doesn’t change the inherent nature of the problem -
a discrete-event simulation can still be used to simulate scheduling taking service levels into account. There
is, however no readily extensible tool that can be used for the simulation of different, possibly new scheduling
algorithms, especially not in conjunction with service levels. In order to not duplicate work that has already
been solved in satisfactory way - however, a very common feature [14] - a simulation program or toolkit that
is close to the required functionality should be used and extended. Alea [15] is a job scheduling simulator that
is based on the popular GridSim toolkit; its basic functionalities are fulfilling the requirements, but Alea is not
extensible, can generally not be readily used and does not provide any support for service levels. As an extension
of the GridSim toolkit [28] , Alea’s own code base is, however, more easily manageable. This led the authors
to the decision to analyze Alea and extend it with the ability to simulate service levels. This was supported
by the fact that Alea already supports different scheduling algorithms - as previously mentioned, unfortunately
not related to service levels - can read different workload traces (for example from the above mentioned Parallel
Workloads Archive) and even provides a simple visualization of results.

Alea works by reading different data files for workload traces, hardware resource description and machine
failures. While the specification of failure data is optional, workload traces and resource descriptions are of
course mandatory. Alea is implemented in an object-oriented approach and each entity read from a data file is
a corresponding class instance. The communication between these classes is performed by a central scheduler
component which is divided into a communication and a scheduling part. In order to enrich jobs specified in
workload traces, an additional data file that specifies the service level for each job has been developed. This
data file is read by a custom loader class, similar to the ones for workload traces and resource descriptions
and the service level information is added to the job object. Figure 6.1 shows Alea’s architecture with added
components and communications represented with dashed lines.

Fig. 6.1: The Alea architecture with the added SLA loader [15]

The workload formats that Alea uses are more or less standardized, so the decision was taken to not

172 R. Kübert and S. Wesner

change the format. Instead, a special file mapping jobs to service levels has been created. This file is only
read if service level-scheduling is used, other algorithms which Alea supports are not touched. The scheduling
supporting service levels is currently using a queue-based approach (Alea supports schedule-based approaches
as well). Each newly arriving job is sorted into the queue according to its priority using a special Comparator2.

An initial implementation of the work has already brought tangible results that can guide service providers
to rough estimations on what distribution of service levels can be offered [16]. The initial simulation was
performed using three different service levels - gold, silver and bronze which corresponded to urgent computing,
prioritized scheduling and best-effort and it was investigated in how far different distributions of these service
levels influence the average waiting time of jobs - in each service level and in total - and the machine usage.

Due to the workload distribution itself, the machine usage did not change. This is, however, not universal,
as it is simple to construct example cases where the machine usage is changed. This is especially true if
additional service parameters apart from pure prioritization are used, for example exclusive access to resources.
Scheduling a job for exclusive use of a resource will then reduce the total machine usage if the job running
exclusively will not use as many resources as would be consumed at the same time using non-exclusive access.
The machine usage is most likely not the foremost factor to be considered when offering service levels, as it is of
more importance to satisfy the service levels and only then can other parameters be taken into consideration.

An interesting question is: given a possible distribution of service levels, could the provider give any absolute
guarantees (“X% of jobs submitted in the silver service level will wait less than y minutes”) or is this impossible
and the only guarantees possible are relative (“gold service level jobs are scheduled before silver service level jobs,
which are scheduled before bronze service level jobs”)? In order to answer this question, we have investigated
different distributions of the three service levels and have looked at how each distribution changes the average
waiting time of jobs and, as well, the average waiting times of jobs in each service level. The base case, best-effort
scheduling, can be seen as 100% of jobs in the bronze service level.

Fig. 6.2: Distribution of waiting times with only silver and bronze service levels

2See http://download.oracle.com/javase/6/docs/api/java/util/Comparator.html.

Using service level agreements in a high-performance computing environment 173

Figure 6.2 shows the base case on the left and two additional distributions of only the silver service level,
first with 95% of jobs in the bronze service level and 5% in the silver service level (middle), then with 90% of
jobs in the bronze service level and 10% in the silver service level (right). The average waiting time increases
with rising number of silver jobs, of course, as bronze jobs are potentially queued longer; the same is true for
the bronze level itself, but with a higher increase in the average waiting time – silver jobs have a short waiting
time and therefore reduce the average case. Between 5% and 10% there is only very small increase in waiting
time. The provider can therefore give guarantees that with a high probability will not be breached; he would,
however, have to limit the amount of silver jobs a single user can have in the system as otherwise it is trivial to
force the provider into a situation where it breaches SLAs, for example by submitting a high number of silver
jobs. Even though the increase in waiting time is very small for the silver service level, the provider will not
want to increase the number of silver level jobs too much, as the increase in waiting time for the best-effort
bronze level will then reach a point which makes the provider unattractive to customers only using the bronze
service level.

Fig. 6.3: Distribution of waiting times with gold, silver and bronze service levels

Figure 6.3 shows different distributions of service levels, taking all service levels (gold, silver and bronze)
into account. The trend that can be seen here is similar to the one shown before: the average waiting increases
moderately while the waiting time for the bronze service levels has a much bigger increase. Additionally, for
a constant percentage of bronze jobs, the waiting time for both silver and gold jobs increases with increasing
number of gold jobs. Once again the results hint at guarantees the provider might give: the average waiting
time for gold jobs rises only twice above 1,000s, the average waiting time for silver jobs only twice about 2,500s.

As these results are simulated with fixed workload traces, a provider cannot be 100% sure these findings are
transferable directly to an implementation of service-level based scheduling. Taking more complex considerations
into account can, however, align the simulation closer to reality. Findings after an implementation - for example
the number of jobs that users who have the possibility to submit to different service levels submit to each service
level - can help refine the simulation with user behavior. Nonetheless, the simulation shows that a provider can
at least simulate rough impacts of different distributions of service levels.

174 R. Kübert and S. Wesner

Fig. 7.1: Layered architecture

7. An integrated approach to service level management. The basic service level approach given
above can be realized with current techniques, for example the usage of specialized priority queues; however,
providing more complex service levels cannot be realized that easily but require the integration of service level
management techniques across interface, middleware and resource layer.

Figure 7.1 shows the typical three-layered setup that is used by HPC providers. The left-hand sides shows
clients of the HPC provider, either static or mobile3. The middleware layer is positioned between the client and
the low-level resources and serves as a central entry point to the HPC provider’s system and provides access
through grid middlewares, for example the Globus Toolkit. The Grid middleware takes jobs submitted by the
client and passes them on to low-level resources by means of a resource manager which employs a job scheduler
in order to determine which jobs are placed on which resources.

7.1. Service level selection by the client. Enhancing the client with the ability to select service levels is
very straightforward. This can be either done by changing the job submission client, adding SLA information to
the message sent to the middleware or by integrating SLA functionalities into the application, if job submission
is performed directly out of it.

7.2. Enhancing the middleware. SLA management on a middleware level has been investigated by
various research projects and therefore different components and solutions already exist; the NextGRID project
[21] aimed at providing a generic solution in the broader realm of a full architecture for next-generation grids
while other projects focused on solutions for specific problems - the FinGrid project [9] on the financial industry,
the IRMOS project [12] on the applicability of SLAs to the execution of real-time aware applications on Service-
Oriented Architectures (SOAs) and the BEinGRID project [4] on a solution that can be adapted to different
business cases. As these solutions often have the drawback of being very complex, a simpler solution is preferable,
as it eases the amount of work necessary for installation, integration and maintenance.

Figure 7.2 is a diagram depicting how easily SLA management can be implemented on a middleware level
and the underlying resource layer. The client thereby can either communicate with the SLA Manager, a central
component on the HPC provider side responsible for SLA management, or submit jobs to the cluster front-end
in the manner already explained.

The SLA Manager provides data regarding the long-term SLA contracts, for example contract information,
accounting pertaining to contracts etc. It uses an internal SLA Repository for storing the contracts and other
relevant information and is the central point that is queried by other components regarding SLAs. The cluster
front-end, for example, on submission of a job, can query the SLA Manager for the validity of SLAs and can,
after job completion, send accounting data to the SLA Manager.

The SLA functionality for the cluster front-end in the grid middleware can be realized in a non-intrusive way,
for example through a policy decision point (PDP) that checks incoming requests and their SLA specification for
validity. Incoming requests that do not contain SLA specifications can be mapped internally to a default SLA

3Mobile in this context should not be mixed with cellular phones and is understood as a nomadic user that is connecting from
different locations without predefined IP addresses.

Using service level agreements in a high-performance computing environment 175

Fig. 7.2: High-level SLA management components

specifying a best-effort style service level, thereby realizing complete SLA-functionality and being backwards-
compatible to clients.

7.3. Acknowledgement of SLAs. Honoring service levels of submitted jobs depends on the software
used on this low level. Very simple schedulers, like the default scheduler supplied with the TORQUE resource
manager, cannot honor service levels and need to be replaced by an SLA-enabled scheduler. This can be
implemented by the provider itself, but this is a time-consuming and error-prone job. Rather, an SLA-enabled
scheduler, for example the Moab Cluster Suite, should be used. It allows the formulation of quality of service
levels for resource access, priority and accounting.

The providers main task is then to express the high-level SLAs offered to customers in such a way that
the scheduler can implement them on the resource layer. Additionally, the incoming job requests have to be
mapped to the corresponding service levels.

8. From high-performance to cloud computing. In the previous sections we have elaborated a concept
to enhance “classical” high-performance computing with service levels through the use of long-term service level
agreements. Cloud computing, in many terms similar to the previous scenarios, seems like a logical step for the
provisioning of services and can be a sensible offer to provide for HPC providers besides their usual role. Even
though the term cloud computing is not clearly defined, it can be seen as distributed computing with virtual
machines. Virtualization allows for more flexibility, scalability and abstraction of the underlying resources.
Accounting and billing are usage-dependent [3].

Cloud computing brings benefits both for consumers and providers. Virtualization allows the provider
to use free resources for the execution for virtual machines as the underlying hardware is mostly irrelevant,
although requirements specified by the user of course still need to be met. The usage of virtual machines means
that the provider can offer a multitude of different environments tailored to customers, which was previously
infeasible. Users might even be allowed to provide their own virtual machines, therefore giving them control
over the complete environment.

Cloud computing began on a best-effort basis and many solutions provided today don’t offer any more
service [18] [29]. Service level agreements for cloud computing are, however, provided by some service providers,
but they provide only minimal service levels [6] [19].

It has been shown that both Infrastructure as a Service and Platform as a Service - two types of cloud
computing where the first one offers the concept described above and the second one offers a scalable, flexible
but predefined environment to users - can benefit from service level agreements as well [10].

9. Conclusions. The preceding work has described an integrated approach to using service level agree-
ments for the control of compute jobs which allows HPC providers to offer support for various quality of service
levels. The approach was motivated through a discussion of business models for service provisioning in an HPC

176 R. Kübert and S. Wesner

environment and it has been presented how the usage of SLAs can be simulated before implementing it in a
production infrastructure. Due to the proposed solution including both high-level SLA management and low-
level resource management and job scheduling, service providers can take advantage of service level agreements
through their complete infrastructure. We shortly concluded in how far this can be transferred to the recently
introduced cloud computing paradigm.

A proof of concept implementation of the above mentioned HPC scenario using three distinct service levels
has been implemented, providing overarching service level support from the resource layer to the middleware
layer. Following the trend to provide Infrastructure as a Service (IaaS) solutions, we are currently investigating
how the general concept can be realized with the Gridway meta-scheduler which is compatible with the Open-
Nebula cloud toolkit and therefore would allow for the realization of an SLA-based cloud offering. This enables
HPC providers to offer IaaS with distinct service levels, which is not possible at the moment.

In general, the offering of service levels can be a distinctive advantage for HPC providers as current contracts
normally do not foresee the provision of service levels. Customers gain flexibility by having the possibility to
choose between different service levels when submitting jobs. This also allows providers the option of offering
previously unsupported service models, for example for urgent computing, which can generate a new revenue
stream.

REFERENCES

[1] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows, A. Ly, S. McGough, D. Pulsipher, and A. Savva, Job submis-
sion description language (jsdl) specification, version 1.0. http://forge.gridforum.org/sf/go/doc12582?nav=1. [Online,
accessed 8-March-2010].

[2] Argonne National Laboratories, OpenPBS Public Home. http://www.mcs.anl.gov/research/projects/openpbs/.
[3] C. Baun, M. Kunze, J. Nimis, and S. Tai, Web-basierte dynamische it-services, (2009).
[4] BEinGRID Consortium, BEinGRID project home page. http://beingrid/, 2008.
[5] Cluster Resources Inc., TORQUE Resource Manager. http://www.clusterresources.com/products/torque-resource-

manager.php.
[6] M. Corporation, Download details: Windows Azure Compute SLA document. http://go.microsoft.com/fwlink/?LinkId=

159704, 2010. [Online, accessed 2-March-2010].
[7] K. Djemame, I. Gourlay, J. Padgett, G. Birkenheuer, M. Hovestadt, O. Kao, and K. Voß, Introducing risk manage-

ment into the grid, in e-Science, IEEE Computer Society, 2006, p. 28.
[8] C. L. Dumitrescu, I. Raicu, and I. Foster, Usage sla-based scheduling in grids: Research articles, Concurr. Comput. :

Pract. Exper., 19 (2007), pp. 945–963.
[9] FinGrid Consortium, FinGrid project home page. http://141.2.67.69/, 2008.

[10] G. Gallizo, R. Kuebert, K. Oberle, A. Menychtas, and K. Konstanteli, Service level agreements in virtualised service
platforms, in eChallenges 2009, Istanbul, Turkey, 2009.

[11] F. Howell and R. Mcnab, simjava: A discrete event simulation library for java, in In International Conference on Web-
Based Modeling and Simulation, 1998, pp. 51–56.

[12] IRMOS Consortium, IRMOS project home page. http://irmos-project.eu/, 2008.
[13] James Barkley et al., tortugades – Tortuga is a software framework for discrete-event simulation in Java. http://code.

google.com/p/tortugades/.
[14] R. Katz and T. J. Allen, Investigating the not invented here (nih) syndrome: A look at the performance, tenure, and

communication patterns of 50 r & d project groups, R&D Management, 12 (1982), pp. 7–20.
[15] D. Klusáček and H. Rudová, Alea 2 – job scheduling simulator, in Proceedings of the 3rd International ICST Conference

on Simulation Tools and Techniques (SIMUTools 2010), ICST, 2010.
[16] R. Kübert, Providing quality of service through service level agreements in a high-performance computing environment, in

PARENG 2011, 2-nd Int. Conf. on Parallel, Distributed, Grid and Cloud Computing for Engineering, Ajaccio, France,
Apr. 2011, Civil-Comp Press, pp. ***–***. To appear.

[17] R. Kübert and S. Wesner, Service level agreements for job control in high-performance computing, in IMCSIT, 2010,
pp. 655–661.

[18] O. P. Leads, Opennebula: The open source toolkit for cloud computing. [Online; accessed 22-June-2010].
[19] A. W. S. LLC, Amazon EC2 SLA. http://aws.amazon.com/ec2-sla/. [Online; accessed 2-March-2010].
[20] J. MacLaren, R. Sakellario, K. T. Krishnakumar, J. Garibaldi, and D. Ouelhadj, Towards service level agreement

based scheduling on the grid, in Proceedings of the 2 nd European Across Grids Conference, 2004, pp. 100–102.
[21] NextGRID Consortium, NextGRID project home page. http://nextgrid.org/, 2008.
[22] M. Resch, Entgeltordnung fr die Nutzung der Rechenanlagen und peripheren Gerte des Hchstleistungsrechenzentrums

Stuttgart (HLRS) an der Universitt Stuttgart, 2008.
[23] R. Sakellariou and V. Yarmolenko, Job Scheduling on the Grid: Towards SLA-Based Scheduling, IOS Press, 2008.
[24] T. Sandholm, Service level agreement requirements of an accounting-driven computational grid, Tech. Report TRITA-NA-

0533, Royal Institute of Technology, Stockholm, Sweden, September 2005.
[25] R. Schneider, G. Faust, U. Hindenlang, and P. Helwig, Inhomogeneous, orthotropic material model for the cortical

structure of long bones modelled on the basis of clinical ct or density data, Computer Methods in Applied Mechanics and
Engineering, 198 (2009), pp. 2167 – 2174.

Using service level agreements in a high-performance computing environment 177

[26] J. Seidel, O. Wldrich, P. Wieder, R. Yahyapour, and W. Ziegler, Using sla for resource management and scheduling
- a survey, in Grid Middleware and Services - Challenges and Solutions, D. Talia, R. Yahyapour, and W. Ziegler, eds.,
CoreGRID Series, Springer, 2008. Also published as CoreGRID Technical Report TR-0096.

[27] SimPy Developer Team, SimPy Simulation Package Homepage. http://simpy.sourceforge.net/.
[28] A. Sulistio, U. Cibej, S. Venugopal, B. Robic, and R. Buyya, A toolkit for modelling and simulating data grids: an

extension to gridsim, Concurr. Comput. : Pract. Exper., 20 (2008), pp. 1591–1609.
[29] E. Systems, Eucalyputs - your environment. our industry leading cloud computing software. [Online; accessed 22-June-2010].
[30] S. Wesner, Integrated Management Framework for Dynamic Virtual Organisations, dissertation, Universität Stuttgart,

Stuttgart, Germany, 2008.
[31] V. Yarmolenko and R. Sakellariou, An evaluation of heuristics for sla based parallel job scheduling, in Parallel and

Distributed Processing Symposium, 2006. IPDPS 2006. 20th International, April 2006, pp. 8 pp.–.
[32] C. S. Yeo and R. Buyya, Managing risk of inaccurate runtime estimates for deadline constrained job admission control in

clusters, in ICPP ’06: Proceedings of the 2006 International Conference on Parallel Processing, Washington, DC, USA,
2006, IEEE Computer Society, pp. 451–458.

Edited by: Dana Petcu and Marcin Paprzycki
Received: May 1, 2011
Accepted: May 31, 2011

Scalable Computing: Practice and Experience

Volume 12, Number 2, pp. 179–191. http://www.scpe.org
ISSN 1895-1767

c© 2011 SCPE

BEYOND CLOUDS – TOWARDS REAL UTILITY COMPUTING∗

MATTHIAS ASSEL, LUTZ SCHUBERT, DANIEL RUBIO BONILLA AND STEFAN WESNER†

Abstract. With the growing amount of computational resources available, not only locally (e.g. multicore processors), but
also across the Internet, utility computing (aka Clouds and Grids) becomes more and more interesting as a means to outsource
applications and services, respectively. So far, these systems still act like external resources / devices that have to be explicitly
selected, integrated, accessed and so forth. In this paper, we present our conceptual approaches of dealing with increased capacity,
scale and heterogeneity of future systems by integrating and using remote resources and services through a kind of web-based
“fabric”.

Key words: distributed systems, resource fabric, utility computing, service-oriented operating system, distributed application
execution, management of scale, multicore architectures

1. Introduction. Over the last few years distributed computing has gained in relevance, not only as a
concept, but – more importantly – as a commercial reality: through “Clouds” and multicore processors which
make concurrent compute units available for the average user [1, 2]. Notably, usage of these two environments
differs significantly. Cloud systems, on the one hand, are essentially server-like machines available over the
Internet and accessed accordingly (via e.g. remote desktop or SSH). On the other hand, the capabilities of
multicore machines are basically locally available – implicitly there are no specific means needed to access and
use such resources.

What is more, cloud systems typically deal with scaling a specific service or application multiple times
according to access and availability needs, i.e. perform scale by replication. As opposed to this, multicore
systems, just like high performance computers deal with scaling a single application “vertically” across the
resources in the form of instantiating multiple processes that together form the application logic, as opposed
to individually [3]. It should be noted in this context though that desktop systems and high performance
computing (HPC) systems differ in this respect: whilst the latter typically only deal with execution of one
single process or thread per core at a time, desktop usage typically implies concurrent execution of multiple
services and applications in a time-sharing manner.

In both the cloud and the multicore case we talk of “distributed systems” in the sense that the system
on which services, applications or even single processes are being executed consists of multiple resources (i.e.,
compute node vs. compute cores) connected via a communication and / or messaging link (i.e., interconnect
vs. buses). From this perspective, we can specifically note that clouds and multicore systems provide (very)
similar capabilities on different environments. Section 2 will elaborate how a common “denominator” of such a
distributed system could look like.

By exploiting the commonalities, rather than focusing on the differences, it would in particular be possible
to exploit remote resources as if local, thus truly realising the Grid’s original concept [4, 5]. For example,
an application could be replicated beyond the restriction of the local system, and new applications executed
remotely without interfering with any local executions, thus competing over resources. In addition, even simple
laptop systems would be enabled to execute demanding applications in the same fashion as on a home or office
PC [6]. Whilst this is not a new idea as such (see [4]), its realisation has many impacts not only on a middleware,
but more importantly on operating system and programming model. Sections 3 and 4 of this paper will highlight
how such a “resource fabric” [20, 21] could be realised and to which specific technological issues it could be
applied.

Merging the different paradigms of “distributed systems” would enable new types of systems and implicitly
new types of applications that allow following the worldwide trend of internet integration, dynamic outsourcing
etc. in short, the Future Internet. Section 5 will describe two types of application areas in more detail. As will be
shown, it is not yet possible to overcome all technical issues easily, in particular since the “natural” technological
development (i.e., the industrial / commercial provisioning) follows the laws of stepwise development, rather
than disruptive (r)evolution. We will conclude this paper with an analysis of the main outstanding issues in
section 6.

∗This work is partially supported by the S(o)OS project under FP7 grant agreement no. 248465 (http://www.soos-project.eu).
†HLRS – University of Stuttgart, Dpt. of Intelligent Service Infrastructures and Dpt. of Applications & Visualisation, Nobelstr.

19, D-70569 Stuttgart, Germany({assel,schubert,rubio,wesner}@hlrs.de).

179

180 M. Assel, L. Schubert, D. R. Bonilla and S. Wesner

2. A “New” Von Neumann Architecture. “Distributed systems” in their widest sense , i.e. including
multicore processors, clusters, clouds and grids all have in common that they integrate compute units over
a communication link. The main difference thereby being the specifics of the linkage: whilst communication
between cores in a multicore system has a very low latency, cloud and grid systems generally use the intra-
/ internet for communication, meaning high latency but considerably large bandwidth. Finally, HPC systems
integrate different levels of linkage, ranging from multicore interconnects to fast, broadband networks (100GB
Ethernet, Infiniband).

In principal, latency can be compensated by bandwidth, i.e. if the delay is l and the bandwidth b, the
effective data de communicated in a set of messages over a time-frame t is

de(t) = t ∗
b

l
. (2.1)

In other words, latency is anti proportional to bandwidth: if latency is high, bandwidth should be large
too, and vice versa. Low latency can compensate a small bandwidth, in order to reach the same effective
data throughput. However, an important factor has been ignored in this calculation, namely the numbers of
communications within that time-frame. Obviously latency impacts only per individual invocation, respectively
message exchange (actually leading to half the throughput per communication side), meaning that the full
throughput depends on the number of invocations, which is accordingly high if the latency is small, and low
with a large latency.

Invocations =
t

l
. (2.2)

For non interactive systems this does not play a major role, the delays in communication are not noticeable
as such – however, in applications that directly interact with the user (such as a word processor), any delay
occurring between user input and system reaction beyond 0.1 seconds leads to the impression of a “non-reactive”
system, and beyond 1 second, it will even disrupt the user’s flow of thought [7]. Browsers take a position
somewhere between interactive and non-interactive and users show a slightly higher tolerance towards waiting
time than in local applications (4 seconds for maintaining the flow of thoughts according to Young and Smith [8]).
Implicitly, offering applications via the web typically leaves an impression of them being slow and unresponsive.

Latency is always a source for problems, when task execution is synchronously dependent on communication,
i.e. when the querying task is blocked as long as it is waiting for a response. This affects in particular parallelised
applications where the individual processes need to synchronise data. The average developer however is not
aware of the connection details – not only are they difficult to acquire, but even more difficult to represent
and cater for in the program in some form. The general tendency is therefore to make use of asynchronous
messaging in the web domain (clouds, grids) where latency and bandwidth is high, and synchronous messaging
inside compute clusters, trying to minimise latency. However, applications with little communication needs
may nonetheless occupy multiple resource instances for their execution - in particular embarrassingly parallel
applications fit and scale well in either environment. By removing the interactive part from the processing
tasks, web-based systems can even be exploited for demanding user applications.

To achieve this, we do no longer need to distinguish between different resource types, but between their
connectivity. From this perspective, the different notions of distributed systems fall together as a complex system
consisting of computational resources connected over a communication link. Modern systems are therefore no
longer building up a strict von Neumann architecture, but a modular platform that connects any amount of
von Neumann like units. In particular from a programming perspective, we can therefore derive a modified
von Neumann architecture as depicted in Figure 2.1, in particular the I/O moves closer to the processing unit
(PU) thus allowing for connectivity between multiple PUs without an explicit single central instance. We also
distinguish between processing and memory units (MU), which are connected through a dedicated I/O. It must
be noted that current multicore systems do not make use of an explicit I/O unit for core-2-core communication
– whilst this is expected to change, the according I/O will still most likely differ from the one connecting with
the outside of the processor. It must also be mentioned that cache access is not linked to an I/O as such, but
to a memory controller – again, long-term developments (e.g. ring over caches) will impact here.

All this however, has no impact on the programming layer. In this view, clusters, multicore processors and
cloud or grid based systems are essentially identical. So far, this model is realised through according means

Beyond Clouds – Towards Real Utility Computing 181

Fig. 2.1: A modified von Neumann architecture where I/O is directly coupled to multiple compute units and
memory units, respectively.

on the middleware level (with the highest level of abstraction being represented through distributed workflows,
e.g. [22]).

2.1. Data Management in the “new Model”. The massive distribution of data over multiple machines
(i.e., storage points) as provided by this new architecture fundamentally changes current data management
concepts, too, in particular data generation, exchange and storage. As data usage grows faster than bandwidth
(and even faster than storage), any form of data movement implicitly consumes a large amount of time and
resources, respectively. To compensate for this restriction, new mechanisms, strategies and tools are required
that manage the movement of particular data sets (similar to [9]) in segments across a large storage hierarchy.
Ideally, data movement is restricted to the minimum amount needed at any specific time and maintained in a way
so as to reduce the distance between sender and recipient. Similar to the code (see below), data must therefore
be managed in a more intelligent fashion, according to the points of access and the degree of synchronisation,
respectively coherency across usage points (see also [10]). As such, data that is frequently used should be
moved to highly parallel dynamic storage (e.g. parallel file systems like Oracle’s Lustre1 or virtual distributed
file systems like GFS [11] or a combination of both), while archived data should reside in “passive” storage
devices (e.g. low-cost storage devices or robotic tape libraries).

To allow for this separation, a fundamental requirement is the ad-hoc allocation, use and release of particular
storage space. Hence, algorithms should automatically request necessary space but also track and delete unused
data from these dynamic storages, so as to minimise storage costs and increase throughput. This is not only
relevant for any storage device but also main memory and caches are affected. Both are extremely useful to
achieve fast processing of data sets and thus higher throughput, too. It should be noted here that the latter units
are most effective and relevant for multicore processor rather than distributed systems. However, the entire
data management hierarchy ranging from caches and main memory to any (external and / or remote) storage
device has to be considered and optimised in order to achieve better performance and thus reduce latency. Of
particular relevance is also that data source and applications are not necessarily directly coupled. Collections
of data sets should be organised as hierarchical directories. Such abstraction will essentially change the way the
I/O is expressed by applications and will involve data exchange and storage management in a form that maps
data sets into physical devices without affecting the application’s behaviour.

Similarly, replication of data represents a key issue to increase data availability through locality. Manage-
ment of replicas has to carefully deal with lifetime issues to remove outdated pieces immediately, so as to not
unnecessarily block storage space. New replicas should be dynamically created, distributed and / or destroyed

1http://www.lustre.org/

182 M. Assel, L. Schubert, D. R. Bonilla and S. Wesner

based on users’ and applications’ needs but also according to technical requirements [12]. In shared environ-
ments, i.e. where multiple access points require the same data, serious consistency issues across nodes have to
be addressed [13].

3. Weaving Resource Fabrics. The classical approach towards dealing with distributed systems consists
in providing a form of middleware that translates function invocation, instantiation etc. into a set of remote
procedure calls or web service calls. The actual details depend not only on the realisation but also on the
domain applied to.

In multicore systems, the actual transaction logic is encapsulated and realised via the hardware; super-
computer clusters employ some form of dedicated communication programing model (with either explicit (e.g.
MPI2) or implicit (e.g. PGAS3) messaging) that is translated into ports and sockets at compile time. The
grid / cloud support typically builds on HTTP protocols that are typically translated into ports and sockets at
runtime. In other words, the actual type of communication bridge is transparent to the user, though he will still
have to use it in different ways, depending on use case and environment. Though there are ways of controlling
and configuring the communication link, there is little possibility to exploit this dynamically for maintaining
distributed code – in other words, parallel programming models that use synchronisation for controlling the
execution behaviour base on the assumption that the underlying infrastructure is effectively homogeneous, or
at least give this impression to the user. In reality however neither the resource infrastructure, nor the program
is effectively homogeneous: even in the strong scaling based HPC domain, the actual algorithm consists of both
parallel and sequential segments that interchange during execution.

What is more, e.g. in typical (unstructured) numerical grid algorithms (such as blood-flow simulation
etc.), the communication relationship between the parallel processes is not symmetrical, meaning that the code
would benefit from a distribution on the infrastructure aligning the connectivity between compute units with
the neighbourhood model of the code. The classical means to developing parallel applications consists in either
segmenting the work or the data by identifying natural partitions of either of those [14]. Whilst this is the
most common approach, it suffers from the drawback that it a) requires good knowledge about the program
and the concurrency in work and data, necessitating additional development work; b) the partitioning may
be too small or to big to be efficient, in particular if the communication exchange between segments is not
considered properly; c) the specific capabilities of a heterogeneous system are mostly unused – what is more,
if the according effort is undertaken to adapt code to the specific system, it will become less portable; and
finally d) not all kind of segments can be identified this way. Heterogeneity and architecture of the system are
typically regarded as obstacles, but program execution can actually benefit from this structure by reflecting the
“natural” behaviour of an application.

We can identify the following key aspects of any algorithm:

1. Concurrency – some functions are executed without explicitly sharing data or resources. In this case
these segments can be executed in parallel.

2. Parallelism – similar to concurrency, some functions operate on a common data set, but the actions
they perform are not directly dependent on one another. This is typical for loops over large grids (“loop
unrollment”).

3. Interactivity – in particular in desktop applications, the interface towards the user can be easily defined
by the connectivity to external input resources.

4. Background Tasks – are tasks waiting for specific events to execute and with little relationship to the
main execution (regarding data dependency).

Similarly, the communication needs are not the same between all these parts, though there is no general
statement about the relationships possible: concurrency and parallelism do not necessarily imply high connec-
tivity (low latency), as e.g. embarrassingly parallel applications show. On the other hand, events processed in
the background may require immediate response, and interactivity does not mean that all processing on the
input data has to be executed immediately (cf. word count and spell-checking in modern word editors: even
though they react “immediately” to any input, the delay until the actual results are available is of no concern
to the user and hence typically not even noticeable). Again, keep in mind that if the result is in some form
relevant (in the sense of often checked by the user), the time frame for maintaining a flow of work is 1 second [7].

2http://www.mcs.anl.gov/research/projects/mpi/
3http://pgas.org/

Beyond Clouds – Towards Real Utility Computing 183

3.1. The Structure of Applications. The structure of an application can therefore be used as an
indicator for its distributability (and, to a degree, parallelisability). The (runtime) behaviour provides additional
information about the actual connectivity between the individual segments and thus its requirements towards
the communication model, i.e. the relationship of latency versus bandwidth. Implicitly, runtime behaviour
effectively provides more information about the potential code and data distribution than the programmer can
currently encode in the source code. This is simply due to the fact that this is not in-line with our current
way of writing programs and is implicitly not directly supported by programming models. The foundation
is however laid out by integration of remote processes (web services) and dedicated synchronisation points in
parallel processes – this does not always reflect the best distribution though, as the according invocations are
mainly functionality- rather than communication-driven. A way of identifying and exploiting the “behavioural”
structure of the application for distribution purposes consists in runtime analysis and annotation of the code
and data memory to produce a form of dependency graph (cf. Figure 3.1) which depicts the invocations of
memory locations (code) and read / write operations on data.

Fig. 3.1: A simple code (C) and data (D) dependency graph of a sequential application with a loop over an
array (C2). The graph denotes a sequence of actions with t(x) representing the xth transition, respectively
access action.

In order to acquire the according code and data blocks, the basic starting point consists in identifying
jumps and non-consecutive data accesses. Figure 3.1 exemplifies how the graph information can be used to
identify an unrollable loop (C2) that consecutively accesses unrelated memory blocks to produce a result. In
this simplified case there is no data dependency between C1 and C2, or even between C2 and C3, which means
that the unrolled C2 blocks do not even have to be synchronised. An example of such a loop would be

C2: for (int i = 0; i < 4; i++) a[i] = 0;

As opposed to this, Figure 3.2 depicts the example of a loop that can not be unrolled due to dependency issues
in C2. This loop could look like

C2: for (int i = 1; i < 3; i++) a[i] = a[i-1] * 2;

Notably, the examples given are not sensible for parallelisation, as the actual work load per iteration is too small
to compensate the overhead for spreading out, communication etc. All analysis so far is based on the simple fact
of data relationship and dependency – not unlike the approach pursued in StarSS [15], which takes a directive
based approach to task parallelisation on top of C, C++ and Fortran. The runtime takes care of dependency

184 M. Assel, L. Schubert, D. R. Bonilla and S. Wesner

Fig. 3.2: Example of a loop that is not unrollable and its representation in a dependency graph.

tracking, synchronisation, and scheduling. Source code annotations allow the programmer to designate tasks
for concurrent execution along with their data dependencies. During runtime, such tasks are placed into a
dependency tree and scheduled for execution by a number of working threads a soon as the data dependencies
are met.In a nutshell, the StarSs directives 1) designate specific code functions / subroutines to be executed
concurrently as so call tasks by the runtime; 2) specify the direction of a function subroutines parameters, i.e.
input, output, or inout, which is later used to infer the inter-dependencies of task in a task-dependency graph.

Accordingly, even though a pattern based approach like the one presented above does principally provide
information about the distribution and parallelisabilty, it does not per se increase the execution performance.
In order to not only identify principle points of distribution and parallelisation, but to also make code execution
more efficient, so as to exploit the specific benefits of parallel architectures and infrastructures, further infor-
mation about the code behaviour is needed – in particular the “strength” of code and data relationships, and
the size of the segment. Note that timing can be derived through more detailed sequential information (i.e., in
Figure 3.1 or Figure 3.2 by storing actual timestamps in tn). Strength of relationship is thereby proportional
to amount of invocations divided by the full execution time.

With this information, we can derive a graph (Figure 3.3) where the strength of the relationship (e.g. C2
calls C3 less often than C1 calling C2) and the size of the underlying code and data is encoded as weights of
vertices and edges. For simplicity reasons we left out timing information in the figure and concentrated on a
very simple code structure (without loops or similar).

The dependency information in this graph, in combination with the size information can be used to extract
different segments in the form of subgraphs according to nearness (connection strength) and combined size. Or
to put it in computational terms again: according to the number of memory accesses, whereby fewer accesses
imply a potentially good cutting point.

We can thereby distinguish between different types of data dependencies that relate to the “strength”
of coupling, in the sense of the speed required, or rather assumed for executing the according transfer. In
other words, the strength represents the implicit cost for execution performance if the according link should be
delayed. Obviously, the strongest link is therefore the exchange of values via the register set of the processor,
this is followed by memory access and finally any external I/O. It may come as a surprise that the implicit
linkage through sequential execution of operations is similar to the normal workflow. This is simply due to the
fact that effectively any code can be split and, more importantly, even be executed in parallel, given that this
does not affect any values that are processed in the overall algorithms. In other words, if the two segments or
operations are concurrent, each partition reflects the code to be executed on one compute unit (core, node etc.)
and connections across segments need to be realised through a cross-process communication link. Information

Beyond Clouds – Towards Real Utility Computing 185

Fig. 3.3: A dependency graph with implicit relationship strength (length of the vector) and size information
(size of the block). The three areas depict potential areas of segmentation.

about the bandwidth and latency of the system’s specific communication links can thereby serve as an indicator
for cutting point identification, if it is respected that access across segments is effectively identical to data
passing – accordingly, the temporal sequence and dependency of access constrains the segments’ independency
and hence concurrency.

We can regard this as a specific case of the maximum flow theorem, where the maximum communication
between any two given nodes in a flow network (represented by a graph) with limited capacities (bandwidth) is
searched for. In our specific case, the maximum flow of a network denotes the code instances / parts that should
least be cut: If we interpret “flow” as the amount of data shared between two instances, than “capacity” is the
restriction imposed by the type of data exchange. By segmenting the network we imply a further reduction of
capacity at the cutting point – we therefore try to select the points where this impact is minimised, i.e. the
minimum cut. The min cut algorithm applied therefore looks for the edges with the minimal capacity and
flow [23].

As the goal of this process consists in exploiting concurrency between different code logic segments, distance
between nodes (and therefore capacity and flow) are also particularly influenced by the potential degree of
execution overlap. Execution overlap between two segments is effectively represented by the distance between
the connecting nodes, i.e. the number of operations executed between the two connected access commands. For
example, assume that a program writes a variable at the beginning of its execution, but will actually only use
this variable after multiple seconds of execution. If no further relationships in between these two commands
exists, the program can be split at any place in between and these two segments can be executed in parallel
at the same time, as long as the first write command is executed before any further data manipulations take
place. We thereby want to maximise the degree of execution overlap to make best use of the resources and thus
minimise the total execution time.

The degree of potential overlap (i.e., the maximum degree of overlap between two potential code segments)
thus obviously impacts on the weight between two nodes in the dependency graph. This means that the higher
the degree of overlap, the less relevant the factor of capacity and flow. In other words, if there is enough time
to communicate the according value by any means, the fact that the program assigns a specific strength to

186 M. Assel, L. Schubert, D. R. Bonilla and S. Wesner

the access plays no role anymore. The segmentation process must therefore respect this when calculating the
minimum cut. It must be noted in this context that with the explanation above, we ignore the time for actually
communicating the according data, which impacts on the degree of partial overlap, too.

The full algorithm would exceed the scope of this paper and is therefore not elaborated further here. It is
obvious that one of the major problems for an efficient segmentation consists in the right data gathering gran-
ularity: whilst too fine data blocks will cause memory and algorithm to go over bounds, too coarse information
will lead to too strong relationships and too large segments, so that the effective gain through distribution is
counterweighted by the overhead for communication and memory swaps.

3.2. Lifecycle of Applications in a Resource Fabric. As noted, the major part of the information
about the code is acquired at actual runtime – implicitly, the distribution information may change during
execution, leading to potential instabilities and dependencies, respectively. In this section we will examine the
full lifecycle of an application executed in such an environment and implicitly the steps involved to better exploit
a scalable (and potentially dynamic) environment can be captured:

1. Analysis of the application behaviour (“Analyse”): In an initial step (first time the application is
executed), there is little to no dependency information available, unless an according programming
extension (such as StarSS) has been applied. This means that initially the application is executed
locally in a virtual memory environment that logs the runtime behaviour and hence the dependencies
between code partitions and memory segments. Implicitly first time invocation is effectively identical
to sequential execution – even though user and or compiler (e.g. using the OpenMP4 model) provided
parallelisation (if any) can still be exploited.

2. Identification of appropriate resources (“Match”): The dependencies in the application graph reflect
the communication needs between segments and thus implicitly indicate the required infrastructure
architecture, including type and layout of interconnects. But also specific core types can be exploited
to a degree – e.g. Figure 3.1 shows clear vectorisable behaviour and other microarchitecture specific
patterns can be identified.

3. Distribution and adaptation of code and data (“Distribute”): When appropriate resources could be
identified, the code segments can be distributed across the infrastructure accordingly. In the simplest
case, all partitions will be uploaded prior to actual execution, in which case no additional data has
to be distributed at runtime (besides for the data transported during communication). However, in
principle, it is possible to distribute the segments in their order of invocation, though this runs the risk
of potential delays.

4. Execution and runtime analysis (“Execute”): Actual execution is principally identical to any distributed
program execution with explicit communication between process instances. However, as opposed to an
explicitly developed parallel program, the source code in this model has not been altered and the
communication points and tasks are unknown to the algorithm itself. Accordingly, the infrastructure
has to take care of communicating the right data at the appropriate time. From the development
perspective, this is principally identical to the PGAS (Partitioned Global Address Space) approach,
which provides a virtual shared (global) memory and deals with the communication necessary to enable
remote data access. Effectively the system for enabling distributed execution in the model proposed here
must enact the same tasks directly on the (virtual) memory environment of the operating system (OS),
rather than on the programming level. During execution, the system may continue analysing behaviour
(cf. step 1 “Analyse”) in order to further improve the segmentation information and granularity. As
program behaviour changes according to code dependency, the main issue in this phase consists in
ensuring and maintaining an efficient stability of the distribution. Monitoring and segmentation must
therefore not only consider the dependencies, but also higher-level parameters that implicitly define the
stability of a given segmentation. Though there is some relationship to SLA based monitoring, these
parameters should not be confused with common quality metrics.

5. Information storing (“Store”): Behaviour and distribution information should be stored after execution
in order to be retrieved in the next iteration, thus allowing to skip step 1 and thus improving the
process.

The main issues in the lifecycle consist obviously data exchange and synchronisation of the segments which
are treated as distributed processes. If data and execution are not carefully aligned, inconsistency may lead

4http://openmp.org/wp/

Beyond Clouds – Towards Real Utility Computing 187

to serious crashes, deadlocks, or serious efficiency issues due to overhead. It is therefore not only relevant,
from where data is accessed, but also when and in which order. Ideally, data is being transported in the
“background” whilst the segment is mostly inactive. We will not elaborate these issues here – suffice to say that
if the segments can be treated completely isolated from each other and all memory is swapped during execution
passover, coherency and consistency is ensured.

4. A Middleware for Resource Fabrics. In order to realise an environment that enables such dis-
tributed execution, it must accordingly provide some capabilities to capture memory access and intervene with
code progression so as to pass the execution point at the boundary of the individual segments. Effectively this
means that the system provides a virtual environment in which to host and execute the code - a full virtual
system however would impact on execution performance. Whilst this may be acceptable for some type of appli-
cations where simplicity of development ranks higher than performance, in particular in scalable environments,
efficiency typically ranks higher.

However, the system does not necessarily need to provide a full virtual machine, but in particular a vir-
tual memory environment and a set of interfaces to access (shared) resources – in other words, an operating
system. Since effectively in all execution parts memory access needs to be controlled, a centralised operating
system approach would create a serious non-scalable bottleneck and additional delays due to message creation,
synchronisation and communication would turn out a major performance stopper. This relates to the major
reasons why monolithic, centralised operating systems show bad horizontal scaling capabilities [16]. In order to
achieve better scalability the individual compute units hence need some local support to reduce overhead and
enable virtual memory management in a form that can also identify and handle segment passover.

The S(o)OS project5 funded by the European Commission investigates into new operating system archi-
tectures that can deal with exactly this type of scenarios. The approach thereby essentially bases on a concept
of distributed microkernel instances that fit into the local memory of a compute unit (processor core) without
obstructing it, i.e. leaving enough space for code and data stack. We can essentially distinguish between two
types of OS instances in a resource fabric: firstly, the main instance that deals with initiating execution and
distribution, as well as scheduling the application as a whole. Secondly, the local instances that effectively
only deal with communication and virtual memory management. In effect, all instances could have the same
capabilities [16], which would make them larger and more complex to adapt to specific environments though.
In S(o)OS the principle is extended with on-the-fly adaptation of local OS instances according to application
requirements and resource capabilities – this way, the kernel can even support adaptation to resource specifics
without the central instance having to cater for that [17].

In Figure 4.1 we depict the principle of such an operating system with respect to the relationship between
cores (or compute units, comes to that): typically one selected unit will take over the initial responsibility for
code and data, i.e. loading it from storage, analysing it (respectively retrieving the annotations) and distributing
it accordingly. The segmentation information (i.e., the memory structure derived from the dependency graph)
will be passed with the code segments, allowing the local instance to build up the local virtual memory and
implant system invocations at the appropriate time (during segment passover).

4.1. Distributed Execution. Pure distributed execution without any execution overlap is effectively
similar to context switching during time-sharing, only that the “new” state is not uploaded from local memory,
but provided over the communication link between the initiating unit and the one taking over. However, parts of
the state (code and base data) can principally already be available at the destination site due to predistribution
according to the dependency graph (cf. above).

Similar to context switching, the application itself does not have a dedicated point at which to perform the
switch (or even enable it), though with additional programming effort context switching can be avoided (thus
leading to single-task execution, up to a point). As opposed to multi-tasking operating systems, however, a
S(o)OS like system must initiate the context switch (execution passover) at a dedicated point, according to the
segmentation analysis (cf. Figure 3.3). This point is effectively the end of the local segment and can thus be
initiated by a simple jmp (jump) command into the virtual memory address space of the new segment and can
thus simply be appended to the partition. Just like with any access to remote data (be that due to branching
or data access), the operating system has to intercept the request prior to its execution, similar to classical
virtual memory management. The MMU (Memory Management Unit) of modern processors supports this task

5http://www.soos-project.eu/

188 M. Assel, L. Schubert, D. R. Bonilla and S. Wesner

Fig. 4.1: A distributed micro operating system and its relation to the individual compute units in the system.
“Remote” cores can be hosted within the same processor or principally any remote machine.

already, but would need to be extended to also cater for the specific needs of a distributed (cross-unit) memory
virtualisation.

In other words, as soon as the instruction pointer leaves the area of available, and more importantly,
designated code operations, the system needs to be able to judge how to handle the according situation. In
the traditional, unhandled fashion, the system would interpret this similar to a cache miss for data access
and initiate fetching further instructions from memory. In the distributed case, this should however trigger
an execution passover to the remote processor / memory unit. As the point of passover is defined by the
segmentation process as detailed above, it seems appropriate to extend the machine code operations with a set
of instructions for handling the passover at the cutting point.

Notably, code segments in such a resource mesh are essentially treated as independent, separate processes,
that can principally be executed in parallel. The execution restrictions are given by the data dependencies
that can implicitly be regarded as execution triggers. From this perspective, execution passover is hence not so
much a question of identifying the next appropriate segment, but of validating that all relevant preconditions
for execution of the respective segment are met.

In the straight-forward approach we could therefore maintain the data dependency graph as a workflow
description of execution, whereas dedicated flags indicate whether an edge is “satisfied”. In this case, this means
that the according data access operation that forms the precondition for execution of the second segment has
been met and that hence the execution of the dependent process can start, once all these preconditions have
been satisfied. Programmatically this means that flags per datum / edge are maintained which are constantly

Beyond Clouds – Towards Real Utility Computing 189

checked by a scheduler which selects the appropriate process to execute on basis of these flags.

Whilst this approach is nice due to its simplicity, it leads to insufficient resource usage – in particular since
the partial overlap between execution segments are not exploited. This can be easily demonstrated in the case
already introduced above, where an algorithm assigns a variable early in its execution, but only uses the variable
comparatively late. With the partial overlap condition in the segmentation process as described above, we can
assume without restriction of generality that the write operation will be executed in the middle of the first
segment, whilst the read operation will occur in the last third of the second segment, so as to increase resource
utilisation. If however, execution of the second segment is delayed until the first segment has reached the point
of the according write operation, the core dedicated to the second segment will idle for at least half of the
execution time. This would lead to an execution performance that is only minimally better than the sequential
case, even though the situation would allow for twice the execution speed.

The obvious alternative consists in executing the processes till the point of data access and stall further
processing until the data becomes available. As discussed below, this could be achieved by having the process
actively query / access the data source process according to its data dependency specification in the segmentation
graph. Whilst this approach obviously performs well for the case presented above, it may nonetheless lead to
a similarly weak resource utilisation when the first process writes data quite late and the second tries to read
early, i.e. if the execution overlap is small (respectively non-existent). This is obviously the case for segments
that are intended to be executed at a later point in the process in parallel with other segments than this first
one.

Even though this latter case creates weak resource utilisation, it must nonetheless be noted that the access
delay does not create the same execution delay as in the first case. This is due to the fact that the maximum
overlap is still exploited in the case of delayed access. However, to exploit this approach implicitly required that
a large amount of otherwise unused resource are available. Since we cannot assume that (in particular from an
energy-saving perspective), we must instead try to improve the utilisation.

Accordingly, the segments in the dependency graph must be sorted so as to form a workflow that respects
two crucial aspects: (1) availability of resources in principle, and (2) maximising the total degree of overlap
and thereby reducing the total execution time. The second aspect implicitly prevents, respectively reduces the
delay time for data access.

These concepts are implicitly closely related to classical virtualisation concepts, even though in this case,
it has to act on a much lower level than typical virtualisation approaches – namely in between hardware and
machine code. The main task of virtualisation thereby also does not consist in exposing different hardware
capabilities (even though it may be exploited to this end), but more importantly in maintaining an integrated
view on a dispersed environment.

4.2. Data Maintenance. Nonetheless, it must still be taken into consideration that the actual transfer
of the according data consumes time, too. This specific delay was part of our initial considerations of where
and how to perform the code segmentation. In addition, the execution time of a process can only be roughly
estimated and it may therefore happen often enough that a dependent process overtakes the data source process
and therefore attempts to access data prior to its availability.

In order to reduce the impact from communication and delay, data must be handled intelligently by the
system. We can note thereby that the OS instance has principally three options to deal with data access:

1. preemptive distribution: provide the data to all requestors, before they actually try to access it;
2. context switch: pass all status data when passing over the execution point to a remote instance (does

not apply to parallel processes);
3. on demand: make data available and accessible at the moment the remote process requests it.

The actual decision will not only depend on time of access (in particular for parallel processes), but also on
size of the data and on outstanding tasks of the processing segment. For example, if the data will only be ready
by the end of the segment’s processing, there is no point in distributing it earlier. However, if the data size is too
large for single provisioning without introducing unnecessary delays, partial data updates according to the data
segments (cf. above) may be distributed ahead of time (preemptive). Note that current processor architecture
does not allow for easy background data transmission and in most cases the communication will stall execution
of the main process. As noted, a particular issue in this context consists in ensuring data coherency across
segments and avoiding deadlocks. Intel’s MESIF protocol over the Quick Path Interconnect [18] is one means
to ensure cache coherency in a distributed environment at the cost of access delays. The basic principle of

190 M. Assel, L. Schubert, D. R. Bonilla and S. Wesner

this approach consists in checking the consistency of a datum at access time by verifying it against all other
replicated instances. Obviously this protocol does not scale very well and requires a specific type of architecture
that will most likely not be supported in future large scale environments any more [19].

5. Exploiting Resource Fabrics. Since the system primarily caters for distribution of an application
across a (potentially large-scale) environment for effectively sequential execution, how would this approach help
solve the problem of dealing with future infrastructures? The system offers two major contributions that will
be discussed in more detail in this section, namely support for high performance computing but also common
web applications.

5.1. Supporting High Performance Computing. Though the primary concern is distribution and not
parallelisation, the features and principles provided by a S(o)OS like environment deal with essential issues in
large scale high performance computing, namely:

1. exploiting cache to its maximum;
2. providing a scalable operating system;
3. matching the code structure with the infrastructure architecture;
4. managing communication and synchronisation in a virtual distributed shared memory environment.

Whilst the system does not explicitly provide a programming model that deals with scalability over hetero-
geneous, hierarchical infrastructures, it does support according models by providing additional and enhanced
features to deal with such infrastructures. In particular, it implements essential features as pursued e.g. by
StarSS and PGAS: the concurrency information extracted from the memory analysis is consistent with the
dependency graph that StarSS tries to derive [15] and could be used as an extension along that line. The main
principle behind PGAS on the other hand consists in providing a virtual shared memory to the programmer,
with the compiler converting the according read / write actions into remote procedure calls, access requests etc.

5.2. Office@World. A slightly different use case supported by the S(o)OS environment consists in the
current ongoing trend of resource outsourcing into the web (cf Sec. 1). As has been noted before, an essential
part for web exploitation consists in maintaining interactivity whilst offloading demanding tasks. As we have
shown, this does not only affect code, but equally data used in an application – accordingly, the features are
of particular relevance in a future environment where most code and personal data will be stored in the web.
As discussed in detail in [6], the system thus not only allows that code and data becomes accessible and usable
from anywhere at any time (given internet connectivity), but also virtually increases local performance of the
system. This enables in particular frequent travelers to exploit a local system environment for their applications
whilst using data and code from the web – future meeting places could thus offer compute resources that can
be exploited by a laptop user, but also the other way round, i.e. a home desktop machine could replicate the
full environment of the laptop. A low-power, portable device could thus turn into a highly efficient system
by seamlessly integrating into the “Resource Fabric” without requiring specific configuration or development
overhead [6]. This is similar to carrying an extended secure full work, respectively private profile with you.

6. Conclusions. We have presented in this paper an approach to dealing with future distributed environ-
ments that span across the Internet, multiple resources and multiple cores (i.e., computational units), but also
across different types of usage and applications (such as High Performance Computing and Clouds). “Resource
Fabrics” are thereby an effective means to integrate compute units non-regarding their location and specifics.

We have shown how a general view on computing resources can serve as basis for such a development,
enabling higher scalability. To this end, a more scalable operating system is required that enables the explicit
usage of resource fabrics as discussed here. The according OS is still in a highly experimental stage, and
more experiments are needed for concrete performance estimations. However, the basic principle has already
been implicitly proven by the Cloud Platform as a Service movement, where the dichotomy of interactive and
“executive” parts of the application is used to exploit remote resources and services.

Many issues still remain speculative, though, for example regarding the execution of parallel applications
where time-critical alignment is crucial. Along this line in particular the concurrent exploitation of remote
resources, leading to potential time sharing of individual units (and their resources, such as I/O) still needs to
be assessed more critical and deeply. With the general movement towards multicore systems, it can however
generally expected that time-sharing during execution time is no longer a valid execution model. It will be
noticed however, that we did not even touch upon the issues of security and privacy, which will be a major

Beyond Clouds – Towards Real Utility Computing 191

concern in scenarios such as the “Office@World” one. So far, we did not touch upon this as other more
technological issues are more relevant for the time being – according concepts are expected in the near future.

REFERENCES

[1] M.A. Rappa, The utility business model and the future of computing services, IBM Systems Journal, 43,1 (2004), pp. 32–42.
[2] W. Fellows, The State of Play: Grid, Utility, Cloud Presentation at CloudScape 2009, OGF Europe. Available at

http://old.ogfeurope. eu/uploads/Industry%20Expert%20Group/FELLOWS Cloudscape Jan09-WF.pdf, 2009.
[3] L. Schubert, K. Jeffery, B. Neidecker-Lutz, and others, Cloud Computing Expert Working Group Report: The Future of Cloud

Computing, European Commission. Available at: http://cordis.europa.eu/fp7/ict/ssai/docs/cloud-report-final.pdf, 2010.
[4] I. Foster and C. Kesselman, The Grid. Blueprint for a New Computing Infrastructure, Morgan Kaufmann Publishers, 1998.
[5] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall, A Note on Distributed Computing, Sun Microsystems Technical Report,

Available at: http://labs.oracle.com/techrep/1994/smli tr-94-29.pdf, 1994.
[6] L. Schubert, A. Kipp, B. Koller, and S. Wesner, Service Oriented Operating Systems: Future Workspaces, IEEE Wireless

Communications, 16 (2009), pp. 42–50.
[7] R.B. Miller, Response time in man-computer conversational transactions, In: Proceedings AFIPS Fall Joint Computer Con-

ference, 33, ACM, New York (1968), pp. 267–277.
[8] J. Young and S. Smith, Akamai and JupiterResearch Identify ’4 Seconds’ as the New Threshold of

Acceptability for Retail Web Page Response Times, Akamai Press Release. Available at: http://
www.akamai.com/html/about/press/releases/2006/press 110606.html, 2006.

[9] D. Yuan, Y. Yang, X. Liu, and J. Chen, A data placement strategy in scientific cloud workflows, Future Generation Computer
Systems, 26,8 (2010) pp. 1200–1214.

[10] D. Nikolow, R. Slota, and J. Kitowski, Knowledge Supported Data Access in Distributed Environment, In: Proceedings of
Cracow Grid Workshop - CGW’08, October 13-15 2008, ACC-Cyfronet AGH, Krakow, (2009), pp. 320–325.

[11] S. Ghemawat, H. Gobioff, and S. Leung, The Google file system, ACM SIGOPS Operating Systems Review, 37 (2003),
pp. 29–43.

[12] G. Aloisio and S. Fiore, Towards Exascale Distributed Data Management, International Journal Of High Performance Com-
puting Applications, 23 (2009), pp. 398–400.

[13] S. Grottke, A. Koepke, J. Sablatnig, J. Chen, R. Seiler, and A. Wolisz, Consistency in Distributed Sys-
tems, TKN Technical Report TKN-08-005, Technische Universitaet Berlin. Available at http://www.tkn.tu-
berlin.de/publications/papers/consistency tr.pdf, 2007.

[14] I. Foster, Designing and Building Parallel Programs: Concepts and Tools for Parallel Software Engineering, Addison Wesley,
1995.

[15] J. Planas, R.M. Badia, E. Ayguade, and J. Labarta, Hierarchical Task-Based Programming With StarSS, International Journal
of High Performance Computing Applications, 23,3 (2009), pp. 284–299.

[16] A. Baumann, P. Barham, P.E. Dagand, T. Harris, R. Isaacs, S. Peter, T. Roscoe, A. Schuepbach, and A. Singhania, The
multikernel: a new OS architecture for scalable multicore systems, In: Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles, ACM (2009), pp. 29–44.

[17] L. Schubert, A. Kipp, and S. Wesner, Above the Clouds: From Grids to Service-oriented Operating Systems, Towards the
Future Internet - A European Research Perspective, G. Tselentis, J. Domingue, A. Amsterdam: IOS Press (2009),
pp. 238–249.

[18] Intel Corporation, An Introduction to the Intel QuickPath Interconnect, Intel Whitepaper. Available at:
http://www.intel.com/technology/quickpath/introduction.pdf, 2009.

[19] F. Petrot, A. Greiner, and P. Gomez, On Cache Coherency and Memory Consistency Issues in NoC Based Shared Memory
Multiprocessor SoC Architectures, In: Proceedings of the 9th EUROMICRO Conference on Digital System Design. IEEE
Computer Society (2006), pp. 53–60.

[20] L. Schubert, M. Assel, and S. Wesner, Resource Fabrics: The Next Level of Grids and Clouds, In: M. Ghanza and M.
Paprzycki (Eds.), Proceedings of the International Multiconference on Computer Science and Information Technology
(2010), pp. 677–684.

[21] L. Schubert, S. Wesner, A. Kipp, and A. Arenas, Self-Managed Microkernels: From Clouds Towards Resource Fabrics, In:
Proceedings of the First International Conference on Cloud Computing, Springer (2009), pp. 167–185.

[22] D. Churches, G. Gombas, A. Harrison, J. Maassen, C. Robinson, M. Shields, I. Taylor, and I. Wang, Programming scientific
and distributed workflow with Triana services, Concurrency and Computation: Practice and Experience, 18 (2005),
pp. 1021–1037.

[23] M. Stoer and F. Wagner, A simple min-cut algorithm, J. ACM 44,4 (1997), pp. 585–591.

Edited by: Dana Petcu and Marcin Paprzycki
Received: May 1, 2011
Accepted: May 31, 2011

Scalable Computing: Practice and Experience

Volume 12, Number 2, pp. 193–208. http://www.scpe.org
ISSN 1895-1767

c© 2011 SCPE

OPTIMIZING DATA DISTRIBUTION IN VOLUNTEER COMPUTING SYSTEMS USING
RESOURCES OF PARTICIPANTS

ABDELHAMID ELWAER∗, IAN J. TAYLOR, AND OMER RANA

Abstract. Many scientific projects use BOINC middleware to build a volunteer computing project. BOINC uses centralized
data servers to distribute data to its users and some projects can attract thousands of participants. Such large numbers of users
coupled with large datasets can cause a bottleneck for the centralized organization of the BOINC data servers, which has a knock-on
effect on the performance of the project as a whole by limiting the throughput of jobs. Alternative methods have been proposed,
such as the Attic file system, which decentralize data distribution to BOINC participants. This has been shown to scale but does
not attempt to optimize the use of the various distributed data centres being used. We describe performance techniques based
on trust algorithms that when layered on the Attic file system can significantly improve data availability and access time through
intelligent selection of the data center for each user, based on the optimization of three parameters: trust, current connection speed
and availability.

Key words: volunteer computing , P2P, data distribution, trust

AMS subject classifications. 15A15, 15A09, 15A23

1. Introduction. Volunteer computing systems provide a useful infrastructure for supporting scientific
discovery, examplified through systems such as SETI@Home [16], Einstein@Home [18] , Entropia [17], PlanetLab
and recently the Berkeley Open Infrastructure for Network Computing (BOINC) [1]. Each of these systems
provide middleware to enable inclusion of donated resources into a particular scientific project. Such distributed
computing middleware makes use of idle CPU time of donated volunteered resources within the system. BOINC,
for instance, is based on a client/server architecture, where the server generated jobs are pulled onto the clients
for local execution and the results are uploaded back to the server upon completion. Although job execution may
be supported on remote clients in BOINC (with each job being replicated multiple times to improve reliability),
only limited data management support is provided within such systems. The BOINC middleware uses a fixed
set of centralized servers to provide data to each client. As some volunteer computing projects may attract
thousands of participants (table 1.1), access to a single data server becomes a bottleneck. Additionally, the
BOINC data server cannot manage data distribution to all of these participants concurrently, especially when
their bandwidth is limited. The BOINC middleware is therefore primarily designed for CPU-intensive jobs,
by using the idle CPU time of its participants, but it does not take account of the bandwidth and storages
capabilities of the contributing participants.

Projects Users
SETI@Home 1,174,317

World Community Grid 337,456
Roseta@Home 314,822
Einstein@Home 292,175

Climate Prediction 245,355
MilyWay@home 95,492

ABC@Home 45,734
QMC@Home 45,433
PrimeGrid 40,241

SIMAP 36,693

Table 1.1: The top BOINC projects (from [14])

To overcome this bottleneck and improve data distribution, alternative approaches using Peer-to-Peer (P2P)
networks have been proposed. A P2P approach, being far more decentralized in nature, employs a distributed
data layer for the participants of the network and can provide far better data-throughput for the project. This

∗School of Computer Sciences & Informatics, Cardiff University, Cardiff ,UK, Corresponding Author
(a.elwaer@cs.cardiff.ac.uk).

193

194 A. Elwaer, I. J. Taylor and O. Rana

data layer can be extended dynamically, as each volunteer can also now play the role of a data storage server
(referred to as a data centre), and thereby also limit the static nature of BOINC servers. Data centres are
therefore interim distributed storage facilities that provide a buffer between the data serving application and
the client applications. The availability of multiple such data centres reduces access time and improves resilience
of the system (at the cost of ensuring that all copies of the data are consistent).

The participants of volunteer computing projects have limited bandwidth and access speed. Furthermore,
they are unlikely to overload their internet connection by serving a large number of data requests, due to the
availability of limited bandwidth and also due to other applications that they may wish to run concurrently.
We propose a framework built on top of the Attic File System (AtticFS) [13] that can offer file-sharing facilities
that can control bandwidth and limit the number of connections a participant can serve, as well as the keep
alive time of these connections. In addition, the framework supports data provisioning and deals with various
distributed network conditions that can occur during the distributed allocation of multiple data centres. For
example, it is possible for data to become corrupted (with or without the intent of the volunteered resource
owner); data centres can also have different upload speeds and their availability can change over time; servers
may also become unresponsive or unavailable during the operation. Our framework addresses these issues and
allows a client to decide which data centre to download data from (based on preferences identified by the client)
using a trust model.

The rest of this paper is organized as follows. Section 2 provides a background to the problem. Section 3
covers related work in P2P data management and trust and Section 4 contains a discussion about the require-
ments for a system that meets the objectives outlined in the introduction above. Section 5 describes the system
architecture and Section 6 describes the integration of the AtticFS system with BOINC. Section 7 contains a
description of the associated trust framework and Section 8 contains a number of experiments used to evaluate
the framework, by comparing it with a system that does not support trust using the core AtticFS [13] system.
We demonstrate that the use of the trust framework makes the resulting volunteer computing environment more
predictable and reliable.

2. Background. The context for the approach discussed in subsequent sections is presented. A brief
overview of volunteer computing and AtticFS is provided in subsections 2.1 and 2.2 respectively.

2.1. Volunteer Computing. Volunteer computing is a relatively new distributed computing paradigm;
it uses computers which are connected to the Internet and donated by their owners for distributed computing
application, using the computing and storage capability of each computer. Volunteer computing is currently
used in many scientific projects. SETI@home [16] is a scientific project for analyzing radio-telescopic signals to
attempt to detect extra-terrestrial activity. Einstein@home [18] is a project to search for spinning neutron stars
using data from the LIGO and GEO gravitational wave detectors. Climatprediction.net [19] is a scientific project
which aims to produce forecasts of the climate in the 21st century. It makes use of a functional programming
approach to analyse large volumes of data. In April 2011, these and other scientific projects using BOINC
middleware have recorded 5,620 Teraflops through 2,167,503 users, and the SETI@home project has more than
1,174,317 participants, with a sustained performance of about 533 TeraFlops.

2.2. Attic File System. AtticFS is a decentralized, P2P data sharing software architecture for accessing
distributed storage resources available over a network in a similar way to BitTorrent. The AtticFS consists of
four main elements: (i) a data serving application that replicates data on the network; (ii) data centres that
cache data, providing the distributed data source overlay; (iii) a look up service that keeps track of which data
centres have individual data items, and (iv) client applications that download data from data centres on the
network. The primary differences between AtticFS and BitTorrent are the concept of data centres and the use
of HTTP. Since AtticFS is a distributed P2P file serving system, some peers can play the role of data centres
to distribute data to other peers in the network.

Data centres are interim storage facilities that provide a buffer between the data serving application and
client applications. This buffer is particularly important for volunteer computing environments because it
ensures that the data sources can be trusted by clients. Trust plays a crucial role in volunteer computing
environments (and the number of volunteers involved in a project can determine its success or failure), as a
client may often need to interact with or download data from a peer that may exist for a short period of time
and may be operated by an unknown provider. If trust is broken (i.e. the providing peer does not behave as
expected) then the project will fail to attract volunteers and become unsuccessful. Verifying the identity of
a peer is also an important concern in this context, hence in controlled/closed environments, data centres are

VASCODE Optimization of Data Distribution 195

typically issued with certificates signed by a trusted certificate authority (e.g. the project itself) allowing client
applications to verify the identity of the data centre when downloading. Alternatively, clients can be configured
with known data centre hosts. However, the AtticFS architecture allows any client to also serve data (i.e.,
become a data centre) and thus the use of trusted data centres is primarily a deployment choice.

Attic is particularly suitable because it has been designed with volunteer computing in mind, and does
not require all participants to share data, or share equally, therefore differing it from other types of P2P file-
sharing systems e.g. BitTorrent, etc. Attic provides not only a level of security for the data sharing hosts and
a managed lookup facility to coordinate data mirrors and results while minimizing stale information, but also,
unlike most P2P systems, Attic allows client nodes to forgo “tit-for-tat” algorithms to receive data. This is
useful in volunteer computing systems, because many data receiving hosts will not be actively sharing input
data with the network (as is required in many P2P systems in order to continue receiving data) for various
security reasons. Instead, these clients are acting solely as data recipients and are using the P2P system only
to receive data from (potentially) multiple locations. This scenario is of course perfectly valid for BOINC-like
projects because these clients are contributing to the overall project by providing CPU cycles, and therefore are
not required to also share data to be useful. Further, the use of HTTP for all AtticFS transactions allows easy
integration with existing software and firewall configurations and client applications that choose not to server
data require only an out-going HTTP connection.

3. Related Work. Two aspects are discussed in this section: data management in P2P systems and
the general notion of trust in distributed systems. In section 3.1 we outline related work with reference to
the BOINC system also covering related commercial deployments based on BitTorrent and Amazon S3. In
section 3.2 we identify how trust has been used to support service provisioning and how the various views on
trust can be incorporated into a data management system.

3.1. Desktop Grids, Data Management and P2P Systems. BOINC contains a scheduling server
and a client program that is installed on user machines. The client software periodically contacts the scheduling
server to report its hardware and availability, and in response receives a work unit for downloading and executing
a job. Once the client completes the work, it uploads resulting output files to the scheduling server and requests
more work. For data distribution, BOINC projects generally use a single centralized server or, in the case of more
popular projects, a set of server mirrors, which all have to be configured with the BOINC stack. The centralized
nature of this system incurs additional costs on BOINC projects, in both hardware cost and administration and
can quickly become inefficient, especially as replication factors increase and many tasks begin to share the same
input files.

XtremWeb [2], like BOINC, is a software system that gathers unused resources on donated computers and
makes them available to scientific projects. Unlike BOINC, which has centralized servers and users subscribe
to a relatively static set of projects for which they will donate their CPU time, XtremWeb allows for multiple-
users and multiple (changing) applications to run concurrently on the system. XtremWeb provides a platform
on which scientists and volunteers can share their respective resources with one another, and it is often the
case that providers of resources are also the users of the system. If one were to think of BOINC as a large,
stable, managed, and centralized volunteer computing system for distributing workloads, XtremWeb would be
its smaller P2P counterpart that organizes resources in an ad-hoc manner and allows the running of arbitrary
code provided it has been signed and verified by a trusted party. Similar to BOINC, work units in XtremWeb
are provided with the URIs of input files, and these are downloaded as a preprocessing step when a client job
is launched.

There are many popular and proven P2P technologies such as BitTorrent [5], or commercial solutions like
Amazon S3 or Google GFS [3], that could be promising alternatives to the current data handling in BOINC and
XtremWeb. However, in the case of commercial products, there is a direct monetary cost involved that is often
difficult to justify and fund for many scientific projects. Likewise, in P2P systems like BitTorrent, KaZaa, or
FastReplica [4], the facility to easily secure or limit who is able to receive, cache, or propagate different pieces of
data within the same network is generally limited or non-existent. Like most other P2P systems, these systems
discussed above have focused on ensuring conventional file-sharing features that appeal to the broader user-base,
such as efficient transfers, equal sharing to promote network stability and availability, and file integrity.

Desktop Grids, and in particular, volunteer computing environments, have significantly different require-
ments to more conventional P2P file-sharing because security is more complex. In Desktop Grids, it can be
a prerequisite that only certain amounts of data are shared with an individual peer, or that strict bandwidth

196 A. Elwaer, I. J. Taylor and O. Rana

caps are enforced to guarantee that data-sharing volunteers’ Internet connections do not become saturated. It
is important to support both data integrity and reliability, whilst also providing safeguards that can limit a
peer nodes’ exposure to malicious attacks. Furthermore, certain project also require peers that share data to
be restricted to certain trusted entities to ensure the distribution can be relied upon. In this paper, we attempt
to automate this process and provide safeguards and trust mechanisms that can reliably assess each data server
and provide strong cues to the client for choosing a consistent data server at each period of time.

3.2. Trust. The general notion of trust is excessively complex and appears to have many different meanings
depending on how it is used in electronic service provisioning. There is also no consensus in the computer
and information sciences literature on a common definition of trust, although its importance has been widely
recognized and the literature available on trust is substantial. Generally, trust may be used as a metric to guide
an agent in deciding how, when and who to interact with. An agent in this context refers to either a service
user or a provider. Such a metric takes into account the subjective probability with which an agent views its
interaction partners, taking into account local state and external recommendations made by other agents. To
establish a trust mode, agents must gather data about their counterparts. This has been achieved in three ways
in the literature: (i) using prior interaction experience: in this context, trust is computed as a rating of the
level of performance of the trustee using historical data. The trustee’s performance is assessed over multiple
interactions to check how good and consistent it is at doing what it says it does. Interactions that have taken
place recently are treated preferentially to those that have taken place in the distant past. Witkowski et al. [6]
propose a model whereby the trust in an agent is calculated based on its performance in past interactions.

Similar to Witkowski et al., Sabater et al. [7] (using the REGRET system) propose a similar model but
do not just limit the overall performance to the agent’s direct perception, but they also evaluate its behavior
with other agents in the system; (ii) information gathered from other agents: trust in this approach is drawn
indirectly from recommendations provided by others. As the recommendations could be unreliable, the agent
must be able to reason about the recommendations gathered from other agents. The latter is achieved in
different ways: (1) deploying rules to enable an agent to decide which other agents’ recommendation they give
greater preference, as introduced by Abdul-Rahman et al. [8]; (2) weighting the recommendation by the trust
the agent has in the recommender, EigenTrust [9] and PageRank [10] are examples of this approach. In both
of these approaches, the connectivity graph between recommenders is used to infer trust. Generally, an agent
that has successfully delivered its advertised capability and recommends another agent will cause some of its
trust to be transferred to its recommended agent.

Both PageRank and EigenTrust are therefore based on the assumption that a general user, searching over
a set of possible service providing peers, will eventually end up finding a more trustworthy peer if they follow
the recommendation chain from any point in the network. The PowerTrust [11] model works in a similar way
to EigenTrust, focusing on creating overlay hashing functions to assign score managers (i.e. peers who calculate
trust values for other peers, thereby preventing peers from maliciously changing their own trust values) for
peers in the system and for combining trust values to create a global reputation score. Both of these approaches
have limited benefit when considering multiple criteria (as considered in this work and as outlined in section 3)
when calculating trust, i.e., both EigenTrust and PowerTrust are focused on searching for objects using a single
keyword, such as a file name; (iii) socio-cognitive trust: in this context, trust is drawn by characterizing the
known motivations of the other agents. This involves forming coherent beliefs about different characteristics
of these agents and reasoning about these beliefs in order to decide how much trust should be put in them.
An example of this is work by Castelfranchi [12]. Our focus in this work is primarily on characteristics (i) and
(ii) defined above. We used historical data to establish a trust model for a given data centre, and use three
metrics (honesty, availability and speed) to evaluate the level of trust that one can place in a data centre. We
consider reputation to be an aggregated community view about a data provider, i.e. the greater the number of
participants who trust a data centre, the greater the reputation the data centre holds.

4. System Requirements. We identify a set of requirements for a framework that makes use of resources
provided by participants within a volunteer computing project. The core aim is to subsequently provide a tool
based on this framework that is usable by BOINC project participants, allowing them to contribute as a data
centre (data distributor) in the decentralized data centre layer, a data worker, or both. Various subsections
below identify the components of the framework.

4.1. Data Caching. In BOINC projects, clients contact the scheduler server to get jobs to execute on
their local resources, then request input data files from a data server to process the downloaded job, and finally

VASCODE Optimization of Data Distribution 197

upload the results. The input data files on a BOINC client can be obtained by using dynamic caching. This
increases data availability and improves fault tolerance. Moreover, dynamic caching avoids the bottleneck in the
BOINC data server, because data can now be downloade from different places rather than just the data server.
Furthermore, it reduces data download time as client can concurrently download data from these different
sources. To form such a decentralized data centre layer, AtticFS has been used to add caching functionality to
the BOINC client, enabling a BOINC client previously capable of only processing jobs to also be able to cache
data and provide it to other clients.

4.2. Trust. The participants of BOINC projects are ordinary internet users, who have different behaviours
and connection capability. Therefore, to utilize their resources effectively for data distribution, some optimiza-
tion or trust mechanisms are needed. In our work we use a trust mechanism that makes use of particular
properties of a data centre, such as it’s bandwidth, connection speed, availability and other preferences that
may be chosen by a client (provided that data associated with these preferences is recorded). The trust mech-
anism is subsequently used to select one or more data centres to download data from, based on preferences
identified by a client.

4.3. Data Management. The formation and use of a decentralized data centre layer requires the consid-
eration of two key issues:

1. Data Source For a BOINC client to become a data centre, it has to cache data that is initially provided
by the main BOINC data server. When the BOINC client downloads data to process its job, it will
cache this data to be available for other clients, who process the same job, thereby propagating the
dataset on demand. Here, the BOINC data server is made the primary source of data when data is not
available on the data centre layer. When data becomes available on other clients this will extend the
source of data and the BOINC client can use them to download data and cache it.

2. Data Downloading As the data centres are ordinary internet users (who may be connected to the
network using a variety of connection types, e.g. dial-up, DSL, wireless, etc), they can frequently become
unavailable to provide data to other BOINC clients. This transient connectivity therefore needs to be
addressed in the download algorithm and available data centres need to be dynamically updated as the
network evolves. It must also deal with the case that no data centres are available, in which case, the
BOINC client should switch to the main source e.g. BOINC data server to get data.

The general scheme for downloading data is outlined in algorithm 4.3.1, which shows that the trust
algorithm provides the intelligence for each client to determine the best data centre at that point in time. Each
client updates its empirically gathered parameters to feed back into the trust algorithm for the next iteration.
In this way, the system learns dynamically to deal with the changing network conditions.

Algorithm 4.3.1 Download Algorithm

1: if data available in data centre layer then

2: Identify trusted data centres using trust algorithm
3: Download data
4: Generate feedback for server
5: else

6: Use BOINC data server for data download
7: end if

8: Cache data locally
9: Register data location with server

4.4. Bandwidth Throttling. Many internet users have limited bandwidth and may not be interested
in offering this to distribute data – as this can slow their own use of the internet. This framework therefore
must offer a throttle capability to a client on its bandwidth use e.g., if it has 1 MB/s connection it can offer
256KB/s to other clients for downloading data, thereby enabling a user to better plan how their capacity will be
shared between other users. This enables a volunteered resources to continue to participate in the framework,
whilst also enabling a resource owner to continue their own work. We believe such a mechanisms for bandwidth
sharing is likely to increase contribution of resources to a project.

5. System Architecture. Our trust system has four general layers, which are provided in Figure 5.1.
The bottom layer represents the participants of scientific projects who provide their resources to volunteer

198 A. Elwaer, I. J. Taylor and O. Rana

computing projects. The next layer provides the P2P network capability – here we make use of AtticFS. This
layer provides the core capability for volunteers to share data with other participants.

Fig. 5.1: FRAMEWORK LAYER

The third layer provides the Volunteered Atomic Servers for Data Collection and Optimization in Distributed
Environments (VASCODE) trust framework for choosing he location of data download at each time step. In
layer three therefore we integrate a data collection layer, which provides peers the necessary tools to select
from which data server to download data, which peers to trust, and the throttling capabilities to manage their
bandwidth. This layer is described in detail in the section 5.1.

Finally the last layer represents BOINC, which is the programming and Web interface that a project
interacts with in order to the use the system. Since both AtticFS and VASCODE deal with HTTP endpoints, a
simple attic URL scheme plug-in can be used to switch out the general BOINC URL endpoint with a dynamic
AtticFS one to provide multiple possible endpoints for each dataset. Therefore, a project does not need to be
aware of the use of VASCODE and AtticFS in order to have it enabled as the data distribution mechanism.
The integration of AtticFS and VASCODE into existing projects is possible through a plug in that proxies the
HTTP connections and resolves multiple endpoints available in AtticFS.

5.1. VASCODE. VASCODE is a layer built upon the capability provided by AtticFS to add the necessary
functionality to its peers (e.g. worker or data centre) when they download data or distribute it. Figure 5.2
provides an overview of this functionality. Essentially, VASCODE provides the trust-based mechanisms within
AtticFS, enabling the better integration of various components that make up the AtticFS system into BOINC.
VASCODE enables user defined preferences to be taken into account when selecting data centres to download
from, based on previous usage data that has been recorded about these data centers.

The three user defined preferences employed in this work to demonstrate the concept include: availability,
data integrity (i.e. establishment of trust in that the data has not been altered) and connection speed of each
data centre. Each peer in the system provides feedback on each interaction they have had with a data centre.
This data is collected (through the data lookup nodes) and used in the trust algorithm to feedback into a
selection criteria a client uses, to determine the most appropriate sets of data centres to use. By using this
mechanism, the system continuously (i.e. on the completion of each interaction with a data centre) updates the
aggregate statistics for each data centre. We can modify whether the aggregation must be undertaken after each
interaction, or only after a pre-defined number of interactions, in order to reduce the computational overhead
of calculating the aggregate value.

Fig. 5.2: VASCODE Layer on top of AtticFS

VASCODE Optimization of Data Distribution 199

Figure 5.2 shows the three possible roles that a peer can perform in the BOINC-VASCODE integration:
a conventional data worker, a data centre or a data lookup server. Further, each of these roles has various
properties. For example, when the BOINC client is a data worker, it must also be capable of accessing the
data centre layer. It also needs to make use of VASCODE to calculate the trustworthy of these data centres
and select which data centres to get data from. Furthermore, it needs to then provide feedback to help other
participants determine which is the best data centre at this point in time.

A BOINC client can use the VASCODE framework to interact with these functions. If a BOINC client wants
to perform data centre capabilities, then they need to provides attributes such as, (i) how much bandwidth it
wants to offer for data distribution, (ii) the maximum number of connections it will serve, and (iii) the keep alive
time for these connections, for the general configuration of the data centre. Finally, when the BOINC client
plays the role of a data lookup server, it is important to have the ability to collect feedback from clients and
distribute these to other clients for use by the network as a whole. These capabilities are also offered through
our VASCODE layer.

6. Integrating AtticFS with BOINC Projects. AtticFS uses a unique ID to identify data instead of
using a file name. Data is first published using AtticFS to obtain the new ID and then the resolved attic

URL using this ID is deployed in the generated BOINC work unit. A snapshot of a DataDescription of data
published in the AtticFS is shown below:

<DataDescription xmlns="http://Attic.org">

<id>

f050a833-2fac-44c9-9b08-7c

</id>

<name>

file10MB.dat

</name>

......

......

</DataDescription>

The download URL in a work unit is changed to use an attic URL scheme instead of http. This indicates
to the BOINC client when it parses the workunit description to use AtticFS to resolve the endpoint that will
be used to download the actual data. This is illustrated in Figure 6.1.

1. The BOINC client contacts the Task Server to get a workunit.
2. Then it parses the work unit and resolves the data identifier by contacting the data look up server to

get a list of data HTTP endpoint from data centres.
3. The BOINC client then uses VACSODE to determine the best endpoint to use at this point in time

and contacts the data centres to start downloading the data.

A snapshot of a workunit using AtticFS is shown below

<file_info>

<name>f050a833-2fac-44c9-9b08-7c</name>

<url>

attic://host/cplan/download/f050a833...9b08-7c

</url>

<md5_cksum>92d8c8...b0250e5</md5_cksum>

<nbytes>10485760</nbytes>

</file_info>

<workunit>

<file_ref>

<file_name>f050a833...9b08-7c</file_name>

<open_name>in</open_name>

</file_ref>

.......

.......

</workunit>

200 A. Elwaer, I. J. Taylor and O. Rana

Fig. 6.1: Integrating AtticFS in BOINC Project

6.1. Baseline Comparison with BOINC. In this section, we make a comparative evaluation of BOINC
with AtticFS to determine a baseline for the further experiments described later in the paper. We undertake
two experiments to carry out this comparison and the result of this comparison are provide in Figure 6.2.

In the first experiment, we employ the use of a BOINC data server. A different number of data clients (1,
3 and 9) are used to download a 10 MB file. The network speed is set to 10 Mbps for the server and 100Mbps
for the clients. We analysed the performance of the BOINC server as a baseline, the result of this part of the
experiment shows that the average download time needed by all clients to download the 10 MB file increases as
the number of clients increase.

In the second experiment, AtticFS is used to download a 10 MB file, published using a 1 MB chunk size.
The number of data centres is set to 1, 3 and 9. The network speed in this experiment was 10 Mbps for the
servers and 100 Mbps for the clients. We ran the experiment three times using a different number of clients (1,
3 and 9). The results of this part of the experiment show the download time for each client using a different
number of data centres (1, 3 and 9).

Fig. 6.2: Average Download Time 10 MB File Using AtticFS and BOINC Data Server

By using one data centre, the clients download time increases as more clients are added to the network,
because of the limited network bandwidth of the server. The download time increases as more clients attempt

VASCODE Optimization of Data Distribution 201

to download from the same resource creating a queue. Increasing the number of data centres by a factor of three
enables clients to concurrently download chunks. Since the three data centres are shared between the clients
this means the waiting time will decrease. For the nine data centres case, we see the largest improvements and
the most consistency between the clients. By comparing the results of this experiment in Figure 6.2, we notice
that AtticFS will give almost the same results as a BOINC data server when one data centre is used. In fact,
BOINC is marginally more efficient, as it does not have the message overhead that AtticFS has, in terms of
querying and prioritising endpoints before downloading commences. However, as AtticFS adds data centres,
the download time decreases.

7. The VACSCODE Trust Framework. In comparison with the general BOINC system (which uses
a pre-defined data server), a client in our system is required to identify a data centre prior to commencing data
download. The selection of data centres is based on their reputation in the system, with reference to one or
more metrics. The metrics are:

• the upload speed that a client obtained through a connection with a data server
• the availability of a particular data centre
• and the integrity of data supplied by the data centre

These metric are named in the framework as DCspeed, DCAvailability and DCHonesty, respectively.
Each metric is independently calculated using feedback from multiple clients using our specialist tools. We have
chosen these particular metrics because of their dominance in P2P literature, and in supporting job execution
in volunteer computing systems.

Speed primarily relates to performance issues such as access time, latency and effective bandwidth. Avail-
ability relates to uptime and resilience, covering aspects such as downtime, and failure rate. Honesty covers
aspects such as data integrity and quality, storage reliability and any malicious modification to the data. The
trust framework makes use of the AtticFS (discussed in section 3.1) to support concurrent data downloads from
multiple data centres. It utilizes the communication between the clients and the data lookup server to send
feedback and receive data on the associated trust metrics.

The trust framework (Figure 7.1) involves components that operate on both the client and the server; the
client generates feedback, processes trust values and selects data centres based on its preferences; the server
collects client feedback, updates the reputation database and provides reputation data to the clients.

Fig. 7.1: Trust Framework extending AtticFS

In our framework trust is calculated by using feedback from the multiple clients that interact with a data
centre using a Beta distribution [15], as outlined in equations 7.1 and 7.2, specifying whether the client was
satisfied (r) or not satisfied (s) with the download from a data centre. The Beta distribution has been used to
take into account this combined assessment (i.e. by considering both satisfied and not satisfied) from multiple
clients, rather than only consider the positive outcomes (i.e. the number of times that a client has been satisfied
with the download). After a client completes downloading data, it provides a subjective assessment of each of
the three metrics (availability, honest and speed) for each data centre that has been used by this client. This
public feedback can then subsequently be used by other clients, to support their decision about which data
centres to trust, using equations 7.1 and 7.2.

202 A. Elwaer, I. J. Taylor and O. Rana

x =
r + 1

r + s + 2
(7.1)

T = a.TAvailability + b.THonesty + c.TSpeed, where a + b + c = 1 (7.2)

When a client calculates the total trust value of each data centre it uses algorithm 7.0.1. As outlined in the
algorithm, a threshold referred to as trustThreshold is used to limit the number of data centres that have been
returned as an outcome of a search. The client can either modify this parameter themselves or set the minimum
number of data centres (referred to as minDC in algorithm 7.0.1) they would prefer to obtain to download
from (i.e., the total number of data centres that match their particular trust criteria). In algorithm 7.0.1, the
threshold value is set by a client to be 0.9. If an automated approach is used, i.e. where a client does not specify
the threshold but instead identifies the minimum number of data centres they would prefer to download from,
this threshold value is automatically adjusted.

Algorithm 7.0.1 Data Centre Selection

1: selectedDataCentres = 0;
2: trustThreshold = 1.0;
3: decrement = 0.1;
4: minDC=3;
5: loop
6: for each DataCentre[i] do
7: if TotalTrustValue[i] ≥ trustThreshold then
8: selectedDataCentres = selectedDataCentres + 1;
9: return [i] ;

10: end if
11: end for
12: if selectedDataCentres ≤ minDC then
13: trustThreshold = trustThreshold - decrement;
14: goto loop
15: else exit();
16: end if

8. Experiments.

8.1. Availability Experiments. In a volunteer computing environment peers can enter and exist the
network at any time. In AtticFS, as peers can also play the role of a data centre, the availability of these data
centres can change over time. With the distributed servers appearing and disappearing, a mechanism is required
to limit this variability in the network so that a clients download efficiency is maximised. We conducted a series
of experiments to show how the download bandwidth is improved when the trust framework is utilised.

In the first experiment, Attic FS consists of a lookup server and 10 data centres. The 10 data centres have
a 10Mb/s connection and are all deemed honest peers (i.e. no malicious behaviour) for this experiment. 20
modified AtticFS clients (running on 20 Linux machines) were used to mimic data requests, which were setup
to request a 10MB file at periodic intervals. The clients report their download experience to the lookup server
when they finish downloading data. This feedback to the server contains the status of each data centre and
information about whether they were available, whether the download speed was satisfactory and whether they
were honest. A Poisson distribution was used to simulate the availability of data centres – as this represents a
realistic scenario from many existing P2P systems. Figure 8.1 shows the distribution of the data centres and
when they are online and offline over a four-hour period. The total duration of the experiment was eight hours,
only the first four hours have been shown here to demonstrate the overall availability trend.

We compare the behaviour of the AtticFS client with and without the trust framework. One instance of each
type of client are used, each requesting data periodically every five minutes during the experiment. The modified

VASCODE Optimization of Data Distribution 203

Fig. 8.1: Data centres Availability

AtticFS client is configured with the following parameters: Availability weight factor (AWF)=1, Honesty weight
factor (HWF) = 0, and Speed weight factor (SWF)=0, as we are only interested in the availability of the 10
data centres, the other weight factors are set to zero.

Fig. 8.2: Data Download using AWF in the first four hour period

This experiment had a duration of eight hours, the data centre availability in the first four hours is the
same as in the second four hours as shown in (Figure 8.2), and we found that during the first four hours of the
experiment, the download time of both clients is similar see (Figure 8.3). However, in the next four hours, our
trusted data centre has an improved download time as the trust algorithm converges and learns the state of the
network i.e. our trusted data centres learn to avoid the unavailable data centres as the experiment progresses.
In Figure 8.3, it can be observed that the behaviour of nodes employing the use of the trust algorithm becomes
smoother and more predictable during the last four hours of the experiment. We believe this convergence
shows promise as the algorithm can adapt to network conditions and variability in node availability, which is a
requirement of the volunteer computing environment as a whole.

204 A. Elwaer, I. J. Taylor and O. Rana

Fig. 8.3: Data Download using AWF in the second four hour period

8.2. Honesty Experiments. In this experiment, malicious data centres are injected into the network in
order to disrupt the system. These nodes intentionally provide corrupted data to their clients in order to attack
the system. We designed an experiment to show how our trust framework can become fault tolerant to this
malicious behaviour and avoid the use of malicious data centres to recover and repair the corrupted network.
This experiment focuses on the honesty of data centres and how this affects the download time. It aims to show
how the client which uses our trust framework offers better stability and hence increased download efficiency
than the ordinary AtticFS client. Note that since an MD5 hash is taken of the data, malicious peers can only
slow down the network because if the hash of the downloaded file does not match the original hash of the data,
it will be discarded and downloaded again. Our framework detects these malicious peers and effectively removes
them from a clients download list thereby making significant gains overall.

Fig. 8.4: Attic File System using Different Data centres Behaviour

Seven data centres are used in this experiment (Figure 8.4). Three of them are honest data centres and
the other three are malicious and send corrupted data to their clients. Because we are interested in the honesty
of these data centres, they are available throughout the duration of the experiment, this experiment is repeated
three times every time the data centres uses the throttle functionality to configure their speed connection to
(128 KB, 256 KB and 512 KB). The modified AtticFS client is configured with the following parameters (AWS
= 0, HWF = 1, SWF = 0). As identified in Experiment 1 for availability, only the honesty weight factor is set
to 1 in this experiment.

VASCODE Optimization of Data Distribution 205

Fig. 8.5: 128 KB upload speed

Fig. 8.6: 256 KB upload speed

Fig. 8.7: 512 KB upload speed

206 A. Elwaer, I. J. Taylor and O. Rana

Figures (8.5, 8.6, 8.7) show the result of this experiment. It can be observed that our trusted client has
significantly better download time because it avoids the malicious data centres, while the ordinary AtticFS client
uses all the data centres and therefore downloads a number of unnecessary corrupted chunks, which need to be
reloaded – thereby incurring a download overhead. After a short period of convergence, our system performs
on average 3 times better than the standard AtticFS approach. We believe that this shows a huge potential
as it addresses one of the fundamental issues in volunteers distributing data, which is the ability to trust third
party peers. This experiment indicates that our system can learn to avoid malicious peers and dynamically
select more trusted peers in the network, which opens up the possibility for such a dynamic data distribution
approach.

Fig. 8.8: Different upload speed

8.3. Speed Experiments. The data centres used in AtticFS can choose different upload speeds using
the throttle functionality and this obviously affects the download time of each peer. Since clients are interested
in getting data in the fastest possible way, they should obviously choose those data centres with high-speed
connections. However, if all peers download from the same fastest peers then there will be a bottleneck, so any
algorithm must dynamically optimise the distribution of clients connected to a data centre at each time-step
during the operation of the system. Our trust framework provides such a mechanism by choosing data centres
with high bandwidth at that point in time in order to optimise the throughput of the distributed system as a
whole. In this experiment therefore we are interested in how the trust framework is used to choose the data
centres which have the highest bandwidth connections at any point in time. For this experiment, 10 data centres
are used (Figure 8.8). The upload speed of these data centres are configured using throttli ng functionality to
configure the upload speed of each data centre as mentioned in (Table 8.1). The data centres have continuous
availability and they all act honestly. The modified AtticFS client is configured with the following parameters
(AWS = 0, HWF = 0, SWF = 1) to configure the system to only focus on the speed of the data centres.

No of Data centres Bandwidth
1 1 MB
2 512 KB
3 256 KB
4 128 KB

Table 8.1: Different upload Speed

The results in Figure 8.9 show significant improvements by clients making use of the trust framework,
compared to the conventional AtticFS approach, achieving download speeds several times faster overall. Even
at this small-scale proof-of-concept testbed, these results demonstrate the benefit of the approach.

VASCODE Optimization of Data Distribution 207

Fig. 8.9: Different upload speed

9. Conclusion and Future Work. The experiments described in this paper show how to extend and
improve data distribution in volunteer computing projects using volunteers resources . Furthermore, they show
significant improvements with respect to a clients download time when the trust model is used compared to the
conventional AtticFS scheme. By comparing against AtticFS which makes use of multiple concurrent downloads
using file chunks, rather than a conventional downloading mechanism based on a complete file, we are able to
evaluate our approach against an already optimized system. Although the testbed we used is small, it employs
the use of machines on a real network rather than taking a simulated approach where it is typically not possible
to record a direct observation of the system. We believe these experiments show extremely encouraging results
that can be investigated further. We are planning to perform experiments using this system using higher
numbers of network sizes and also to investigate different combinations of the trust algorithms parameters in
order to achieve an optimal balance of network behavior and performance.

REFERENCES

[1] D. P. Anderson, BOINC: A System for Public-Resource Computing and Storage. In: 5th IEEE/ACM International Workshop
on Grid Computing, pp. 365–372. Pittsburgh, USA (2004)

[2] F. Cappello et al., Computing on Large-Scale Distributed Systems: XtremWeb Architecture, Programming Models, Secu-
rity, Tests and Convergence with Grid. Future Generation Computer Systems 21(3), 417–437 (2005)

[3] S. Ghemawat, H. Gobioff, S. T. Leung ,The Google File System. SIGOPS Oper. Syst. Rev. 37(5), 29–43 (2003). DOI
http://doi.acm.org/10.1145/1165389.945450

[4] L. Cherkasova, J. Lee, Fastreplica: Efficient large file distribution within content delivery networks. In: Proceedings of the
4th USENIX Symposium on Internet Technologies and Systems (USITS). Seattle, WA, USA (2003)

[5] B. Cohen, Incentives build robustness in BitTorrent. In P2PEcon (2003).
[6] M. Witkowski, A. Aritikis, and J. Pitt, Experiments in building experiential trust in a society of objective-trust based

agents. Trust in Cyper-societies, pages 111-132, 2001
[7] J. Sabater and C.Sierra,Regret: a reputation model for gregarious societies. Proceedings of the 1st International Joint

Conference on Autonomous Agents and Multi-Agents Systems, 2002.
[8] A. Abdul-Rahman and S. Hailes. Using Recommendations for managing trust in distributed systems. Proceedings IEEE

Malaysia International Conference on Communication, 1997.
[9] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The Eigentrust algorithm for reputation management in P2P

networks. Proceedings of the Twelfth International World Wide Web Conference, 2003.
[10] L. Page, S. Brin, R. Motwani, and T. Winograd, The Pagerank citation ranking: Bringing order to the Web. Stanford

Digital Library Technologies Project, 1998.
[11] R. Zhou and K. Hwang, PowerTrust: A Robust and Scalable Reputation System for Trusted Peer-to-Peer Computing, IEEE

Transactions on Parallel and Distributed Systems, Vol. 18, No. 4, pp 460–473, 2007.
[12] R. F. C. Castelfranchi, Principles of Trust for Multi-Agent Systems: Cognitive anatomy, social importance and quantifi-

cation. Proceedings of the International Conference on Multi-Agent Systems, 1998.
[13] Ian Kelley and Ian Taylor, Bridging the Data Management Gap Between Service and Desktop Grids. In: Distributed and

Parallel Systems In Focus: Desktop Grid Computing, Peter Kacsuk, Robert Lovas and Zsolt Nemeth (Editors), Springer,
2008.

[14] BOINC statistics, http://www.boincstats.com. Last accessed: April 2011.
[15] A. Jsang, R. Ismail , The beta reputation system, in: Proceedings of the 15th Bled Electronic Commerce Conference, Bled,

Slovenia, 2002.
[16] The SETI@Home project, http://setiathome.berkeley.edu. Last accessed: March 2011.

208 A. Elwaer, I. J. Taylor and O. Rana

[17] Entropia project, http://www.entropia.com. Last accessed: March 2011.
[18] Einstein@Home project, http://einstein.phys.uwm.edu. Last accessed: March 2011.
[19] The Climateprediction.net project, http://climateprediction.net. Last accessed: April 2011.

Edited by: Dana Petcu and Marcin Paprzycki
Received: May 1, 2011
Accepted: May 31, 2011

Scalable Computing: Practice and Experience

Volume 12, Number 2, pp. 209–226. http://www.scpe.org
ISSN 1895-1767

c© 2011 SCPE

HBASESI: MULTI-ROW DISTRIBUTED TRANSACTIONS WITH GLOBAL STRONG
SNAPSHOT ISOLATION ON CLOUDS

CHEN ZHANG∗AND HANS DE STERCK†

Abstract. This paper presents the “HBaseSI” client library, which provides global strong snapshot isolation (SI) for multi-row
distributed transactions in HBase. This is the first strong SI mechanism developed for HBase. HBaseSI uses novel methods in
handling distributed transactional management autonomously by individual clients. These methods greatly simplify the design of
HBaseSI and can be generalized to other column-oriented stores with similar architecture as HBase. As a result of the simplicity
in design, HBaseSI adds low overhead to HBase performance and directly inherits many desirable properties of HBase. HBaseSI is
non-intrusive to existing HBase installations and user data, and is designed to be scalable across a large cloud in terms of data size
and distribution.

Key words: distributed transaction, cloud database, HBase, snapshot isolation

AMS subject classifications. 68U01, 68N01, 68M01, 68P01

1. Introduction. Column-oriented data stores (column stores) are gaining attention in both academia
and industry because of their architectural support for extensive data scalability as well as data access efficiency
and fault tolerance on clouds. Data in typical column stores such as Google’s BigTable system [3] are organized
internally as nested key-value pairs and presented externally to users as sparse tables. Each row in the sparse
tables corresponds to a set of nested key-value pairs indexed by the same top level key (called “row key”). The
second level key is called “column family” and the third level key is called “column qualifier”. Each column in
a row corresponds to the data value (stored as an uninterpreted array of bytes) indexed by the combination of
a second and third level key. Scalability is achieved by transparently range-partitioning data based on row keys
into partitions of equal total size following a shared-nothing architecture. These data partitions are dispatched
to be hosted at distributed servers. As the size of data grows, more data partitions are created. In theory, if
the number of hosting servers scales, the data hosting capacity of the column store scales. Concerning data
access, at each data hosting server, data are physically stored in units of columns or locality groups formed by
a set of co-related columns rather than on a per row basis. Column stores derive their name from this property.
This makes scanning a particular set of columns less expensive since the data in other columns need not be
scanned. Persistent distributed data storage systems (for example, with file replication on disk) are normally
used to store all the data for fault tolerance purposes.

Column stores provide database-like table views, and it would be desirable if distributed transactions can be
supported on them so that applications that used to be built around traditional database management systems
(DBMS) can make use of cloud column stores for transactional data processing, with improved scalability.
Indeed, many applications, such as a large number of collaborative Web 2.0 applications, would benefit from
transactional multi-row access to the underlying data stores [1]. In fact, those modern applications pose high
requirements on scalability and fault tolerance and there are currently no existing DBMS solutions (even parallel
database systems) to fully cater to those requirements due to the overhead of managing distributed transactions
and the fact that it is impossible for DBMSs to guarantee transactional properties in the presence of various
kinds of failures without limiting system scalability and availability [1, 4, 7]. Unfortunately, no out-of-the-box
support for transactions involving multiple data rows exists in column stores. This is mainly because multi-row
transactions in column stores are intrinsically distributed transactions [6] and traditional approaches would
suffer from similar problems as in existing distributed DBMS solutions.

This paper presents a novel light-weight transaction system with global strong snapshot isolation on top of
HBase (which is a representative open source column store modeled after Google’s BigTable system), without
using traditional methods of handling distributed transactions, such as standard 2-phase commit protocols,
consensus-based commits, atomic broadcast, or explicit data locking. A preliminary version of our system,
providing weak SI for HBase, was presented in [11]. HBaseSI, described in this paper, recycles some of the design
principles of the initial system from [11] but uses a different, more efficient solution for handling distributed
synchronization, with added support for global strong (and not weak) SI and an efficient failure handling

∗David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada (c15zhang@cs.uwaterloo.ca).
†Department of Applied Mathematics, University of Waterloo, Waterloo, Canada (hdesterck@uwaterloo.ca).

209

210 C. Zhang and H. De Sterck

mechanism. Our work in [11] described the first ever SI system for column-stores. Independently and at the
same time, the Google Percolator system was presented in [8]. Percolator provides global strong SI for Google’s
column store system, BigTable. Percolator shares many design principles with our SI system, but there are
also many important differences in design goals. The current paper extends and improves the system for SI in
HBase that we presented in [11].

The solution presented in this paper is called “HBaseSI”. HBaseSI targets the same type of OLTP(Online
Transaction Processing) workloads as HBase, taking advantage of HBase’s random data access performance
comparable to open source database systems such as MySQL. It is implemented as a client library and does
not require any extra programs to be deployed or running in addition to existing HBase servers. In addition,
HBaseSI is non-intrusive to existing user data that have already been stored in HBase since it does not require
modifications to existing user data tables. In HBaseSI, transactional management meta-data are written by
each transaction to a separate set of HBase tables. There is no central “commit engine” that decides which
of the transactions that are ready to commit can actually commit; instead, the transaction processes decide
autonomously, in a distributed fashion, whether they can commit or have to fail, using the information stored in
the additional meta-data HBase tables. As a result, little performance overhead pertaining to distributed syn-
chronization is added by the transactional management logic. Many of HBase’s desirable properties are directly
inherited as well, such as fault tolerance, access transparency and high throughput. Concerning scalability, the
design target of HBaseSI is to be fully scalable across a large cloud in terms of data size and distribution. In
its current design, HBase does not target scalability in terms of the number of transactions per unit of time.

This paper is structured as follows: in Section 2 we introduce some background information about snapshot
isolation and HBase. In Section 3 we describe the design and implementation of HBaseSI in detail. In Section 4
we evaluate the performance of HBaseSI. Section 5 gives comparison to related work, and section 6 concludes.

2. Background.

2.1. Snapshot Isolation. For our purposes, we can describe Snapshot isolation (SI) as follows.

S1 C1 S2 C2

Timestamp Ordering

Global Time
Ts1 Tc1 Ts2 Tc2

Transaction T1 Transaction T2

Fig. 2.1: Illustration of SI.

A transaction Ti acquires a start timestamp, S(Ti), at the beginning of its execution (before performing
any read or update operations), and acquires a commit timestamp, C(Ti) at the end of its execution (after
finishing any read or update operations). We will also use the shorthand notation Si=S(Ti) and Ci=C(Ti) in
what follows. The timestamps Si and Ci are ordered: they inherit their ordering from the ordering of real global
times Tsi and Tci to which they correspond (Fig. 2.1). This ordering implies in particular that all read and
write operations of Ti happen (in real, global time) after the time corresponding to Si, and all write operations
of Ti happen (in real, global time) before the time corresponding to Ci. Transactions Ti and Tj are called
concurrent if their lifespan intervals (Si,Ci) and (Sj,Cj) overlap. A transaction Ti that commits successfully is
called a successful or committed transaction.

Global Strong SI can then be described as follows. A transaction history H satisfies global strong SI, if
its (successful) transactions satisfy the following two conditions: 1. Read operations in any transaction Ti see
the database in the state after the last commit before Si. In other words, all updates made by the committed
transaction Tj which has the last Cj <= Si are visible to Ti. However, read operations in transaction Ti that
read data items that have previously been written by transaction Ti itself, see the data values that were last
written by Ti; 2. Concurrent transactions have disjoint writesets.

We add the qualifier ‘global’ when we define strong SI because we want to investigate Snapshot Isolation
for a distributed system in this paper, and want to stress that the definition above applies to the global
system. Additionally, the above definition does not regulate the behavior when two concurrent transactions
with overlapping writesets both try to commit. In many occasions, a rule called “first committer wins” is
employed, which will cause the failure of the transaction that is second in attempting to commit. To better
illustrate this rule, let’s look at an example set of transactions shown in Fig. 2.2. T1 and T2 must have disjoint

HBaseSI: Snapshot Isolation on Clouds 211

writesets in order to both commit successfully. If they have overlapping writesets, only T1 will successfully
commit and T2 will abort, because T1 attempts to commit before T2.

T1

T2
T3

S1 C1S2 C2 S3 C3

Fig. 2.2: An example SI scenario.

The strong notion of SI as defined above is different from the original definition of SI [2], which allows Si
to be chosen corresponding to any time in the past before the first read or update operation in transaction Ti.
This relaxed version of SI is also called weak SI in [5]. To illustrate this difference, we assume that T1 and T2
in Fig. 2.2 have disjoint writesets and both commit successfully. According to the definition of strong SI, T3
must see all the committed results as of timestamp S3, which include the commits for both T1 and T2. However
according to weak SI, it is allowed that T3 use a snapshot between C1 and C2 that includes only the committed
results from T1. Typically, versions of the strong notion of SI are implemented in stand-alone, non-distributed
commercial databases. SI is not included in the ANSI/ISO SQL standard but versions of it are adopted by
major DBMSs due to its better performance than Serializablity at the cost of having a potential write-skew
anomaly [2].

2.2. HBase. HBase is a column-oriented store implemented as the open source version of Google’s Big-
Table system. Rows in each table are automatically sorted by row keys. The data value for each row-column
combination is uniquely determined by the row key, column and timestamp. The timestamp facilitates multiple
data versions. Timestamps are either explicitly passed in by the user when the data value is inserted, or
implicitly assigned by the system. Each table is horizontally partitioned into row regions and each region is
hosted by a distributed “region server” with region data stored in persistent storage (Hadoop HDFS, which
stands for Hadoop Distributed File System). Currently, only simple queries using row keys and timestamps are
supported in HBase, with no SQL or join queries. It is also possible to scan and iterate through a set of columns
row by row within a row range. The scalability of HBase is attributed to the shared-nothing architecture of
data regions hosted by distributed region servers. However, there could still be bottlenecks in the system in the
case when a single region server gets overloaded by too many requests on the same data region. In fact, at each
region server, all the read/write requests to a particular row in a table region are serialized.

Our choice of using HBase as the basis for investigating transactional SI solutions for clouds is not random.
HBase enjoys several nice properties that are important for simple and efficient SI implementations. First,
HBase offers a single global system view with access transparency, meaning that clients access all the HBase
tables as if they are hosted at a centralized server without knowing that they are actually contacting different
distributed region servers for fractions of data. This significantly reduces the complexity of transactional
protocol implementation. Second, HBase provides multi-version data support distinguished by the timestamp
the data item is written with. This feature can directly facilitate the SI protocol implementation. Third, HBase
guarantees single atomic row operations (reads/writes) with strong data consistency in the global table view.

3. HBaseSI.

3.1. System Design. A major design principle of HBaseSI is to provide transactional SI for HBase with
minimum add-ons to existing HBase installations and administration. It may also be an advantage if it is possible
for HBase users with existing data tables to employ HBaseSI with minimum effort. To this end, HBaseSI is
implemented as a client library in Java with no extra programs to be deployed. Applications that need to do
transactions use the client library to interact with HBase instead of using the standard HBase API. Each trans-
action writes its own transactional meta-data (e.g. transaction ID, commit timestamp, commit request, etc.) to
a set of global system HBase tables (separate from existing user data tables), and in the meantime, queries those
tables to obtain information about other transactions. Based on the information obtained, and by accessing
this information with atomic read/write operations provided by HBase, a transaction can autonomously decide
to commit or abort. From a user’s point of view, using HBaseSI requires no modification to any existing data
tables.

212 C. Zhang and H. De Sterck

Table 3.1: W counter table. W stands for “HBase write timestamp”.

Row Key Counter
W 86

Table 3.2: R counter table. R stands for “commit request ID”.

Row Key Counter
R 78

HBaseSI employs several HBase tables in addition to the user’s data tables. These additional system tables
are three Counter tables (Tables 3.1, 3.2 and 3.3) for providing globally unique counters, a CommitRequestQueue
table (Table 3.4) that acts as a queue for transactions that are submitting requests to commit, a CommitQueue
table (Table 3.5) that acts as a queue for transactions that are cleared to commit, and a Committed table (Table
3.6) that keeps track of successfully committed transactions and their writesets.

The Counter tables are intended to serve as a set of centralized locations for issuing globally unique IDs
that may be used as well-ordered counters. Each of the tables is a single-row-single-column table. The HBase
incrementColumnValue function is used on the column “Counter” to dispense globally unique and strictly
incremental time labels to transactions atomically. The W Counter table (Table 3.1) issues a unique ID to
each transaction at the start of the transaction. W stands for “write timestamp”. This ID will be used as the
unique ID for the transaction, and as HBase timestamp when writing data to HBase tables (note that in this
paper we use two types of timestamps: “HBase write timestamps” are used as write timestamps for HBase to
distinguish different data versions, and “transaction timestamps” are timestamps used for transaction ordering
purposes). The order of the W counter is not important, as long as each W counter is unique. The R Counter
table (Table 3.2) issues unique commit request ordering IDs dispensed to transactions that are attempting to
commit, establishing an order among the transactions attempting to commit, which is, among other things,
used for enforcing the “first-committer-wins” rule [2]. R stands for “commit request ID”. The C Counter table
(Table 3.3) issues the final unique commit timestamps, each of which is used as the actual commit timestamp
of a transaction. Different from W counter values, the strict global ordering of the R and C counter values is
very important to the correctness of the HBaseSI protocol.

The CommitRequestQueue table (Table 3.4) is used as a queue for ordering commit attempts and checking
for conflicting updates among concurrent transactions that try to commit at almost the same time. A transaction
Ti, when trying to commit, enters this queue table by first inserting a row containing its unique transaction
ID Wi (obtained from the “W Counter table”) as the row key and its writeset as the columns. (The writeset
column names are unique identifiers for the data locations in the user data tables.) After this row is inserted,
the transaction requests and obtains a commit request counter value Ri (from the “R counter table”) and enters
Ri into the “RequestOrderID” column of its row. The sequence of first inserting a row, then getting a Ri counter
value, and finally putting it under the “RequestOrderID” column is essential for the queuing mechanism of our
SI protocol as we will explain later. The transaction’s writeset items are marked as “Y”, and this information
is used to detect conflicting updates. The “RequestOrderID” column is used to order the commit attempts and
enforce the “first-committer-wins” rule.

The CommitQueue table (Table 3.5) is a queue for transactions that are already cleared for committing but
just waiting for their turns to be actually committed according to the ordering of their commit timestamps. Each
row in this table corresponds to a transaction and is indexed by the unique transaction ID obtained from the
“W Counter table” (Table 3.1). The “CommitTimestamp” column stores the timestamp obtained from the “C
Counter” table (Table 3.3) which is used as the commit timestamp of the transaction. Note that a transaction
Ti first writes a row in this table with row key Wi, then requests and obtains its CommitTimestampCi, and
finally adds Ci to its row. This sequence is again essential for the queuing mechanism to work properly, as
explained below.

The Committed table (Table 3.6) stores the meta-data records for all the committed transactions. Each
row in this table represents a successfully committed transaction indexed by the commit timestamp as the row
key with the writeset data items as columns, containing the HBase timestamps used to actually write the data

HBaseSI: Snapshot Isolation on Clouds 213

Table 3.3: C counter table. C stands for “commit timestamp”.

Row Key Counter
C 54

Table 3.4: CommitRequestQueue table.

Row
Key

writeset
item 1

writeset
item 2

writeset
item 3

RequestOrderID

W1 Y Y R1
W2 Y Y

to the user’s HBase data tables. In fact, for any transaction, successfully inserting a row into this table means
that the transaction is committed atomically and the data becomes durable. Moreover, any row key of the
table can identify a consistent snapshot because the rows in the table are strictly ordered and automatically
sorted by row keys, and committed transactions are guaranteed to arrive in the Committed table in order due
to the queuing mechanism, as explained below. The Committed table is also used by transactions in various
functional ways, such as looking for the most recently committed version of data when reading, and checking
for writeset conflicts at commit time against previously committed records. Note that HBase’s sparse column
nature is crucial here for efficiency: the table can contain many columns, but each column typically contains
only few elements, and can be scanned efficiently.

In HBaseSI, each transaction sees a consistent snapshot of all the data in HBase user tables, identified by
the start timestamp of the transaction. When a transaction Ti starts, it first gets its start timestamp by reading
the last row of the Committed table at the time it starts, and uses the row key of that row Cj as the start
timestamp. So we have Si=Cj, and Ti will see all data committed by Tj, and any transaction committed before
Tj. Transaction Ti also obtains a unique ID Wi from the “W Counter” table as its transaction ID. Then it
performs reads/writes based on the snapshot identified by the start timestamp. Data being read/written are
first saved in in-memory readset/writeset data structures so that repeated reads can be efficiently served from
memory, except for the first read/write of a certain data item. In this way, it is guaranteed that the transaction
reads its own writes at all times. Writes are applied to the user data tables immediately (speculatively) using
the transaction ID Wi as the unique timestamp to write to HBase (recall from Sect. 2 that a timestamp can
be specified when writing data to HBase). At commit time, the transaction puts itself into the CommitRequest
table, may wait for its turn if there are any conflicting commit attempts, then checks for conflicts with committed
transactions, and finally enters the CommitQueue table if it is cleared to commit. It then waits for all the
other concurrent transactions in the CommitQueue table with smaller RequestOrderID to commit, and finally
commits by atomically inserting a simple record row into the Committed table to make its writes durable. The
pseudocode of the protocol is provided in Listing 1.

1 Transact ion {
Write se t {(dataLocation (n) , va lue (n)) } ; // containing N items

3 Readset {(dataLocation (m) , va lue (m)) } ; //containing M items
Long Wi , S i ; //Wi i s transac t ion ID , Si i s s t a r t timestamp

5 Long Ri ; //Ri i s request order ID
Long Ci ; //Ci i s commit timestamp

7

//method ca l l e d at the s t a r t o f transac t ion
9 Start () { // transac t ion s t a r t s

Wi = GetTimestamp (W counte r) ;
11 S i = LastLineFromCommittedTable() . getRowKey () ;

}
13

//method to read data va lue
15 Read(dataTable , dataRow , dataColumn) {

dataLocation = dataTable + dataRow + dataColumn ;
17 i f (dataLocation in WriteSet) { read from WriteSet ; return dataValue ;} //read own wr i t e s

i f (dataLocation in ReadSet) { read from ReadSet ; return dataValue ;} // repeated read−only va lue
19 committedRecord = ScanForMostRecentRow (in Committed tab le , range [0 , S i] c on ta in ing a column named

as dataLocation) ; //Scan in range [0 , Si] (row keys are C counter va lues not l e s s than 0) ,
and return the l a s t record in the l i s t

Wread = committedRecord . valueAtColumnDataLocation() ; // f ind the l a t e s t data vers ion in snapshot .

214 C. Zhang and H. De Sterck

Table 3.5: CommitQueue table.

Row Key CommitTimestamp
W1 C1
W2

Table 3.6: Committed table.

Row Key writeset item 1 writeset item2 writeset item3
C1 W1 W1
C2 W2 W2

I f the data item i s not in the Committed tab le , Wread w i l l be se t to nu l l
21 dataValue = readData (in dataTable , in dataRow , in dataColumn , with Wread) ; //read data . I f Wread

i s nu l l , no timestamp w i l l be s p ec i f i e d in the HBase read (r e c a l l t ha t i t i s op t iona l to
spec i fy a timestamp in reading from HBase)

ReadSet . add (dataLocation , dataValue) ;
23 return dataValue ;

}
25

//method to write data va lue
27 Write (dataLocation , dataValue) {

WriteSet . add (dataLocation , dataValue) ;
29 writeToDataTable (dataLocation , dataValue , us ing Wi) ; // d i r e c t l y wri te to data t a b l e s with HBase

timestamp Wi
}

31

//method for commit attempt
33 boolean Commit() {

EnqueueForCommitRequest () ; //queue up for re que s t ing to commit
35 CheckConf l ictsInCommittedTable (up to Si , with c o n f l i c t i n g WriteSet) ; //do scan in the Committed

t a b l e for wr i t e se t columns in range [Si + 1 , +INFINITY) and ve r i f y tha t there are no
wr i t e se t c o n f l i c t s

I f (clearedToCommit) {
37 EnqueueForCommitting() ; //when c leared to commit , queue up to f i n a l l y commit

} else {
39 doCleanup () ; // abort transac t ion , remove rows in system ta b l e s and data items writ ten to user

t a b l e s
}

41 }

43 //method to ge t a counter va lue
GetTimestamp (HBaseTimestampTable) {

45 IncrementColumnValue (HBaseTimestampTable) // the mechanism to i s sue g l o b a l l y unique and we l l−
ordered timestamps from a cent ra l HBase t a b l e

}
47

//method to enqueue for commit request
49 EnqueueForCommitRequest () {

WriteHBaseTableRow (in to CommitRequestQueue Table , row Wi , columns WriteSet) ;
51 Ri = GetTimestamp (R counte r) ;

WriteHBaseTableRow (in to CommitRequestQueue Table , row Wi , column Ri) ;
53 PendingCommitRequests = GetRowsWithConflictingWriteSet(From CommitRequestQueue Table) ; //one−time

scan
while (PendingCommitRequests . isNotEmpty ()) { // there e x i s t r e que s t s to update c on f l i c t i n g data

55 s e l e c t a row from PendingCommitRequests ;
i f (row has d i sappeared) {

57 remove row from PendingCommitRequests ; // the other transac t ion has completed
} else {

59 wait u n t i l Ri appears in the row ;
i f (row . Ri i s l a r g e r than i t s own Ri) { // the other request i s l a t e r than s e l f

61 remove row from PendingCommitRequests ; //no need to consider
} else { // the other request i s e a r l i e r than s e l f

63 wait u n t i l row d i sappea r s ; //wait t i l l the other request i s handled
remove row from PendingCommitRequests ;

65 }
}

67 }
}

69

//method to enqueue for committing
71 EnqueueForCommitting() {

HBaseSI: Snapshot Isolation on Clouds 215

WriteHBaseTableRow (in to CommitQueue Table , row Wi) ;
73 Ci = GetTimestamp (C counte r) ;

WriteHBaseTableRow (in to CommitQueue Table , row Wi, Ci) ;
75 PendingCommits = GetAllRows (From CommitQueue Table) ; //one−time scan

while (PendingCommits . isNotEmpty ()) {
77 s e l e c t a row from PendingCommits ;

i f (row has d i sappeared) {
79 remove row from PendingCommits ; // the other transac t ion has completed

} else {
81 wait u n t i l Ci appears in the row ;

i f (row . Ci i s l a r g e r than i t s own Ci) {
83 remove row from PendingCommits ; //no need to consider

} else {
85 wait u n t i l row d i sappea r s ;

remove row from PendingCommits ;
87 }

}
89 }

//proceed to commit
91 WriteHBaseTableRow (in to Committed Table , row Ci , columns WriteSet each con ta in ing va lue Wi) ; //

atomic commit operation
DeleteOwnRecordIn (CommitQueue tab l e) ;

93 DeleteOwnRecordIn (CommitRequestQueue tab l e) ;
}

95

Main () {
97 Start () ;

. . . //do reads and wr i t e s
99 Commit() ;

}
101

}

Listing 1: Pseudocode for the HBaseSI protocol.

It is important to understand in detail how HBaseSI handles distributed synchronization among concurrent
transactions concerning the global ordering of transaction commit requests and commits. HBaseSI makes
use of distributed queues to manage transaction commits and to guarantee the “first-committer-wins” rule,
instead of using other traditional methods such as data locks or consensus-based protocols. The benefit is
simplicity in design and implementation, which may in turn improve performance by avoiding the complexity
of handling deadlocks and mandating complicated negotiation protocols for reaching consensus on transaction
commit decisions between distributed data hosting servers involved in each transaction. HBaseSI makes use of
two queues, implemented as two HBase tables. One is the CommitRequestQueue (Table 3.4); the other is the
CommitQueue (Table 3.5). The protocol to ensure a correct sequence of entering and exiting a queue is the
same for the two queues and therefore we explain the protocol using one queue, the CommitRequestQueue, as
an example. Recall that when a transaction Ti makes a request to start the commit process, it first inserts a row
indexed by its unique transaction ID Wi (obtained from the “W Counter table”), then gets a commit request
counter value Ri and puts it under the “RequestOrderID” column of its row. The Ri value determines the
order of Ti in the queue. This sequence of operations is of essential importance to guarantee that no concurrent
transaction will leave the queue out of order, as we explain now. After transaction Ti inserts counter value
Ri into its row in the CommitRequestQueue table, it reads all records in the table once. It then waits until
all rows of transactions Tj it has read obtain Rj values in the table. This is essential to allow the queue to
function based on the order of the R counter values: Ti is guaranteed to see any transaction Tj still in the
queue that may have Rj<Ri, even if Rj appears in the table after Ri. This is so because Ti reads the table
after it has obtained Ri, and any Tj still in the queue that may have Rj<Ri is guaranteed to have its row in
the table at that time, because it inserted its row before requesting Rj. Ti will not proceed to the commit
process until all Tj with Rj<Ri have left the queue, guaranteeing that transactions are processed in order and
establishing the “first-committer-wins” rule. Based on the strict sequence of transactions entering the queue
table, the protocol to ensure the ordering of exiting the queue is shown in Listing 1: pseudocode line 49 to 69.
The pseudocode contains an optimization of the basic queuing protocol: transactions in the queue only need to
wait for transactions that have a conflicting writeset. The same queuing protocol, using C counter values Ci,
is also used to guarantee that transactions that are cleared to commit arrive in order in the Committed table,
see lines 71-89 in the pseudocode. Using this queuing protocol, we can make sure that transactions follow the
exact order as specified by their globally unique and well-ordered counter values. With the queuing mechanism,
we can easily enforce a strict global ordering of transaction commits.

216 C. Zhang and H. De Sterck

Table 3.7: Shop table.

Row Key iPhone4 BlackBerry
Stock 1 3

Table 3.8: Committed table.

Row
Key

Shop:Stock:iPhone4 Shop:Stock:BlackBerry

C6 W6 W6

Transactions in HBaseSI satisfy ACID properties as well as strong SI. Atomicity is provided by the under-
lying HBase atomic row write functionality because the final commit process only requires a single row write
to the Committed table (Listing 1: pseudocode line 91). Durability is guaranteed by the underlying persistent
data storage mechanism, i.e., Hadoop HDFS, because all the data in HBase are stored in HDFS. Consistency
is maintained because only valid data is inserted into the HBase tables through the provided APIs and trans-
actions never leave HBase in a half-finished state. The isolation level provided by HBaseSI is strong snapshot
isolation. Strong SI requires that a transaction reads/writes in isolation upon a consistent snapshot of data
identified by a start timestamp. Seen from the protocol above, our system guarantees that a transaction can
see all the updates committed before it starts (start timestamps are row keys from the Committed table and
any row key in the Committed table can identify a consistent snapshot containing all the previous committed
updates). Our system also guarantees that transactions can only commit (atomically) if no conflicting updates
have been inserted by previously committed concurrent transactions. Therefore strong SI holds.

3.2. Protocol Walkthrough by Example. We now describe the transactional SI protocol along with
the system table usage in more detail by walking through the process of handling two concurrent transactions
with conflicting updates under a concrete example scenario. In this example scenario, Alice and Bob intend to
purchase smart phones from an online shop. They make their purchases by doing transactions involving several
data tables of the shop stored in HBase, for example, item inventory, billing, etc. For simplicity, we limit their
transactions to updating the same “Shop” table containing information about the number of available smart
phones in stock.

Initially, the Shop table shows that the stock is updated with 1 iphone4 and 3 BlackBerrys (Table 3.7) by
a transaction with unique ID W6 and commit timestamp C6 (Table 3.8). The Committed table contains a
record for this stock update. Bob and Alice start transactions Ta and Tb concurrently, with start timestamps
Sa=C6 and Sb=C6 (note that snapshots of different transactions can be the same, such as in this case). Now
let’s assume that Alice and Bob both read the stock of iPhone4 and BlackBerry, and then Alice decides to buy
1 iPhone4 while Bob would like to buy both an iPhone4 and a BlackBerry. Transactions Ta and Tb query the
Committed table using the start timestamps Sa=C6 and Sb=C6 to get the most recently committed version of
the stock data of both types of phones. They will both obtain HBase timestamp W6 and use W6 to read the
stock from the Shop table and put the results into their readsets. (Listing 1: pseudocode line 15 to 23) After
that they perform writes to update the stock and put data into their writesets (Listing 1: pseudocode line 27
to 31). Note that writes are applied to the Shop table immediately using timestamp Wa by Ta and Wb by
Tb respectively, which is facilitated by the multi-version support of HBase (Sect. 2.2). We choose to write the
data into the data tables speculatively to make the commit process faster. The writes become visible to other
transactions only after the transaction has successfully committed.

When they are ready to attempt to commit, Ta and Tb use their transaction ID (Wa for Ta and Wb for Tb)
as the row key to add a row to the CommitRequestQueue table with their writeset items as columns respectively
(Table 3.9). Both transactions enter the CommitRequestQueue table a row with values for their writesets, and
then request their commit request ID from the R Counter table. Then they put the commit request IDs, Ra and
Rb, under the RequestOrderID column and perform a scan of the entire CommitRequestQueue table for all other
row records with conflicting writeset items. This is to find any conflicting concurrent commit requests that may
have Rj<Ra or Rj<Rb in the queue from transactions Tj. In our example, assume that Tb finishes inserting Rb
into its row and that the row for Ta has not appeared in the table yet. Tb then scans the CommitRequestQueue

HBaseSI: Snapshot Isolation on Clouds 217

Table 3.9: CommitRequestQueue table.

Row
Key

Shop:Stock:
iPhone4

Shop:Stock:
BlackBerry

RequestOrderID

Wa Y Ra
Wb Y Y Rb

Table 3.10: CommitQueue table.

Row Key CommitTimestamp
Wb Cb

and finds no conflicts (Ta has not inserted its row yet). Then Tb can proceed to scan the Committed table to
check if there are any conflicting committed transactions with commit timestamp larger than its start timestamp
(C6). Assume there are none. Tb is now cleared for committing and atomically (line 91) adds a row with its
transaction ID Wb as the row key to the CommitQueue table (Table 3.10). After adding the row, it requests
and obtains a commit timestamp Cb and then puts it into its row under the CommitTimestamp column. It
then waits in the CommitQueue for its turn according the CommitTimestamp to finally commit. This wait
in the CommitQueue guarantees that all committed transactions Ti appear in the Committed table in the
order of their commit timestamps Ci, and thus that all the records appearing in the Committed table are well
ordered. After Tb finishes committing (see the resulting Committed table in Table 3.11), it will delete its row
in both the CommitQueue and CommitRequestQueue (Listing 1: pseudocode line 92-93). In the meantime,
assume Ta finishes inserting its row a bit later, and after it scans the CommitRequestQueue table for rows with
conflicting columns, it sees that Tb has already entered the CommitRequestQueue with a conflicting writeset
and RequestOrder ID Rb. Since Rb<Ra, Ta waits until row Tb disappears (meaning that Tb has either been
committed or aborted) before proceeding (Listing 1: pseudocode line 54-65).

3.3. Read Optimization. An optimization for performance to the protocol above is necessary because
the size of the Committed table grows linearly as transactions commit (each committed transaction creates a
corresponding row that persists in the Committed table). Recall that when reading a data item, HBaseSI needs
to scan all the rows in the Committed table up to the snapshot timestamp and iterate through the records
in the result list of the scan to find the most recent data version. As shown in Fig. 4.4 below, the time it
takes for scanning and iterating through the records grows linearly as the number of rows containing the target
columns to scan increases. It would be good if only a small range of the committed table needs to be scanned
by newly arrived transactions if the most recently known committed data version is kept somewhere globally
visible. Following this idea, an extra system table called “Version table” is created (Table 3.12). Each row in
the version table corresponds to a data item that has been written to, identified by its table, row and column
name combination. Instead of using a centralized system component to constantly update the Version Table
records, every transaction is responsible to update the records when new versions of data are read. With the
Version table, when a transaction Ti tries to read any data item, it needs to query the version table first to
see if there is a data version record. If there is a record and the commit timestamp Cj in the record is before
Si, then Ti only scans the Committed table in the range [Cj, Si]. If no previous version is found or the version
found is more recent than the snapshot time Si, a full scan of the Committed table up to the snapshot point Si
is necessary. If a newer version is detected and read, the reading transaction updates the Version table record
after reading the data item.

The adjusted pseudocode for reading with Version table is in Listing 2.

1 Read(dataTable , dataRow , dataColumn) {
dataLocation = dataTable + dataRow + dataColumn ;

3 i f (dataLocation in WriteSet) { read from WriteSet ; return dataValue ;}
i f (dataLocation in ReadSet) { read from ReadSet ; return dataValue ;}

5 Cj = ScanVersionTable (dataLocation) ; // i f the data item doen ’ t e x i s t in the Version tab le , Cj =
0

i f (Cj <= Si) {
7 committedRecord = ScanForMostRecentRow (in Committed tab le , range [Cj , S i] c on ta in ing a column

named as dataLocation) ; //Scan in range [Cj , Si] , and return the l a s t record in the l i s t

218 C. Zhang and H. De Sterck

Table 3.11: Committed table.

Row Key Shop:Stock:
iPhone4

Shop:Stock:
BlackBerry

C6 W6 W6
Cb Wb Wb

Table 3.12: Version table. For example, the most recently read version of the data item stored in user data
location DataLocation1 was committed by the transaction with commit timestamp C17.

Row Key CommittedTimestamp
DataLocation1 C17
DataLocationM C8

} else {
9 committedRecord = ScanForMostRecentRow (in Committed tab le , range [0 , S i] c on ta in ing a column

named as dataLocation) ; //Scan in range [0 , Si] (row keys are C counter va lues not l e s s than
0) , and return the l a s t record in the l i s t

}
11 i f (committedRecord > Cj) {

UpdateVersionTable (dataLocation , committedRecord) ;
13 }

Wread = committedRecord . valueAtColumnDataLocation() ; // f ind the l a t e s t data vers ion in snapshot .
I f the data item i s not in the Committed tab le , Wread w i l l be se t to nu l l

15 dataValue = readData (in dataTable , in dataRow , in dataColumn , with Wread) ; //read data . I f Wread
i s nu l l , no timestamp w i l l be s p ec i f i e d in the HBase read (r e c a l l t ha t i t i s op t iona l to
spec i fy a timestamp in reading from HBase)

ReadSet . add (dataLocation , dataValue) ;
17 return dataValue ;

}

Listing 2: Read with Version table.

3.4. Handling Stragglers. In the protocol above, a transaction needs to wait in two queues, the Com-
mitRequestQueue and the CommitQueue. Due to many possible failure conditions, transactions could stay in
waiting forever if one or more of the previously submitted transactions get stuck in the commit process and
never delete their corresponding rows in the above two queue tables. We call those transactions that do not
terminate properly in a timely manner “stragglers”. Measures must be taken to not only prevent such stragglers
from hampering the other active transactions, but also to avoid any potential data inconsistency issues caused
by re-appearing transactions that had been deemed to be dead.

HBaseSI handles stragglers by adding a timeout mechanism to the waiting transactions. More specifically,
the waiting transactions can kill and remove straggling/failed transactions from the CommitRequestQueue or
CommitQueue based on the clock of the waiting transaction if a preconfigured timeout threshold is reached.
A problem associated with this method is that a straggler may come back to life and try to resume the rest
of its commit process after its records in either queues are removed, which could cause data inconsistencies
and incorrect SI handling. The solution to this problem is to use the HBase atomic CheckAndPut method
on two rows at once in the Committed table when doing the final commit rather than only using a simple
atomic row write operation on one row. The difference between CheckAndPut and simple row write is that the
former method guarantees an atomic chain of two operations involving checking a row and writing to a possibly
different row in the same HBase table, whereas the latter method only guarantees atomicity for a single row
write operation. To use the CheckAndPut method, we first add an extra row called “timeout” in the Committed
table (Table 3.13). When it starts, each transaction first marks the column named after its unique transaction
ID Wi (obtained from the W Counter table) in the “timeout” row as “N”, meaning that the transaction is not
in timeout by default (a non-empty initial value “N” must be set because the CheckAndPut method does not
work with empty column values). Later, in the commit process, if a transaction is deemed a straggler, other
transactions will put a “Y” under the column named after the unique transaction ID of the straggler in the
“timeout” row, and then delete the corresponding records of the straggler in both the CommitRequestQueue
and the CommitQueue. (Note that the sequence of first marking the straggler in the Committed table and

HBaseSI: Snapshot Isolation on Clouds 219

Table 3.13: Committed table.

Row
Key

writeset
item 1

writeset
item 2

W6 Wi Wj

T6 W6 W6
timeout N N Y

only then deleting rows in the two queues is essential to the correctness of the SI mechanism). When a healthy
transaction commits, it performs an atomic CheckAndPut: it checks for “N” in the “timeout” row, and if the
check is successful, it puts its row into the Committed table. If the value under its corresponding column is
still marked as “N”, it can indeed successfully insert its row into the Committed table; otherwise it knows it
has been marked as a straggler and should abort by deleting its records in both the CommitRequestQueue and
the CommitQueue tables, if those records still exist. In this way, HBaseSI can make sure that no transaction
can commit once it is marked as a straggler. There is no problem if after a transaction commits successfully by
inserting a row into the Committed table, it fails to delete the corresponding rows in the queues on time; those
records will be removed by waiting transactions after the timeout and SI is not compromised. Note that for
garbage cleaning purposes, after a transaction successfully commits, it will remove the corresponding column
value in the row “timeout”.

3.5. Discussion. In this section, some further issues about the HBaseSI design and usage are discussed.
First, there is no roll back or roll forward mechanism in HBaseSI and there is no explicit transaction log either. It
is interesting to ponder on how HBaseSI supports ACID transactions, even in the face of failures, without those
traditional mechanisms used in DBMSs. In fact, this all attributes to two very important HBase properties. The
first one is that HBase stores many versions of data and allows reads/writes of data using a specific timestamp.
This HBase property makes it possible for every concurrent transaction to write preliminary versions of data but
only the successfully committed transactions get to publish the write timestamps they used in the Committed
table for future reads. In other words, no roll back is necessary because uncommitted data won’t be used in
any case. The other property is the atomicity of the HBase row write and CheckAndPut methods. Using these
atomic methods, HBase guarantees that once a row is inserted into the Committed table successfully, it becomes
durable and is guaranteed to survive failures (media failure is handled by HDFS which stores data replicated
across distributed locations).

Second, we discuss some design choices that affect performance such as scalability and disk usage. HBaseSI
inherits many of the desirable properties of HBase because it is only a client library and imposes little overhead
concerning system deployment. However, users need to be aware that in order to achieve several design goals,
HBaseSI made some sacrifices for performance. For example, four important goals HBaseSI tries to achieve
are: 1. global strong SI across table boundaries; 2. non-intrusive to user data tables; 3. non-blocking start of
transactions with snapshots that are as fresh as possible (strong SI), and non-blocking reads; 4. strict “first-
committer-wins” rule without lost transactions (transactions only abort when there is no chance they will be
able to commit successfully). In order to achieve goal 2, HBaseSI is designed to use a separate set of system
HBase tables for maintaining transactional metadata for all user tables instead of creating extra columns in each
separate user table, which inevitably creates potential performance bottlenecks at the small number of global
system tables. HBaseSI is therefore not designed to provide scalability in terms of the number of transactions
per unit time, but its target is to provide scalability in terms of cloud size and user data size. HBaseSI makes the
final commit process as short as possible and allows writes to insert preliminary data into the user data tables
as the transaction proceeds rather than waiting till the commit time to apply all the updates (note that when
a transaction aborts, it should remove its written items from user tables), avoiding chances for varyingly large
waiting latency incurred by transactions with large writesets to be applied at commit time. In essence, HBaseSI
trades disk space for high throughput in transaction commits. Additionally, it is important that the number of
data versions HBase table locations can hold is set sufficiently high. Furthermore, a dedicated garbage cleaning
mechanism should be created for optimized disk usage, with a policy on maximum transaction duration (such
a policy is important to guarantee that the data that gets garbage cleaned is not needed by any long-running
transactions).

Third, we discuss the efficiency of having transactions wait in queues when committing. Recall that in the

220 C. Zhang and H. De Sterck

HBaseSI protocol, update transactions first wait in the CommitRequestQueue for the purpose of establishing
an order in committing transactions and guaranteeing the “first-committer-wins” rule, and then wait in the
CommitQueue after they are cleared for committing for the purpose of guaranteeing a correct global sequence
of commits so that each row in the Committed table can identify a consistent snapshot of the data tables. Note
that the first wait is only for transactions with conflicting writesets, but the second wait results in sequential
processing of all concurrent transactions, no matter whether the writesets are in conflict or not. Although these
two waits are essential for the commit queuing mechanism to work so that global strong SI can be achieved,
it may sometimes be more efficient to relax the second wait to the extent that a transaction only waits for
other transactions that use the same set of user tables. This would require transactions to declare in advance
which groups of tables they use. This relaxation is reasonable in real-world applications. HBaseSI can be very
easily adapted to such extended usage scenarios to make transactions more efficient in terms of minimizing
unnecessary wait times in the CommitQueue. The decision of whether to use the extended scheme would be at
the users’ discretion.

Finally, we discuss the cost of adopting HBaseSI and the easiness of reverting back to non-SI default
HBase. Normally, once one starts to use HBaseSI, all the read/write operations must be performed through
the HBaseSI API rather than the default HBase API. Only through the HBaseSI API can a transaction find
the correct timestamp used in writing the most up-to-date data, or make its committed updates accessible.
However, it is very easy to write a small tool to help restore the user data tables back to a state that users can
use their data tables in the default HBase manner. The tool only needs to write the latest version of committed
data to all the user data tables once, without specifying timestamps (so that the HBase default timestamps are
used). The next time users want to use HBaseSI again, they can directly use it without any required changes.

4. Performance Evaluation on Amazon EC2. The general purpose of this performance evaluation
section is to quantify the cost of adopting the HBaseSI protocol in handling concurrent transactions. Therefore
tests are performed on each critical step of the HBaseSI protocol, with comparison to the performance of bare-
bones HBase when possible. Additionally, because HBaseSI is the first system that achieves global strong SI
on HBase, there are no other similar systems to compare with for some of the properties. As a result, for those
properties, the tests serve the purpose of showing the users the expected behavior of the system. Furthermore,
as mentioned in Sect. 3.3 above, HBaseSI uses a set of global system tables that facilitate non-blocking reads and
a strict “first-committer-wins” rule, but may become performance bottlenecks if accessed by many concurrent
transactions. In order to make the performance effect of this design decision more apparent, we decided to deploy
all systems tables at the same HBase region server by running all the HBase components on a single machine,
mimicking the possible extreme real-world condition when concurrent transactions significantly outnumber the
HBase servers. The test results are thus expected to show the system performance under heavy loads.

We use 20 Amazon machines in total to perform the tests and we are aware that performance variations
may be observed in Amazon instances [9]. The test results may be affected by this to some extent but should
be enough for proof-of-concept purposes. A high memory 64-bit linux instance with 15 GB memory, 8 EC2
Compute Units (4 virtual cores with 2 EC2 Compute Units each) and high I/O performance is used to host
both the Hadoop and HBase server components. Up to 19 other 64-bit linux instances with 7 GB of memory,
20 EC2 Compute Units (8 virtual cores with 2.5 EC2 Compute Units each) and high I/O performance are used
to run client transactions. All these machines are in the same Amazon availability zone so that the network
conditions for each instance are assumed to be similar.

In the tests, each machine runs a single client program issuing transactions if the total number of clients is
less than 19. If the total number of clients is more than 19, an equal number of concurrent clients are run at
each machine instance. For example, each machine instance can run 1, 2, or more clients with the total number
of transactions being 19, 38, etc. At each client, transactions are issued consecutively one after another. In
other words, a new transaction will only be issued when the previous one has finished executing, having either
committed or aborted.

The goal of Test 1 is to measure the performance of the timestamp issuing mechanism in terms of throughput.
In the test, each client connects to the server and requests a new timestamp directly after being granted one.
After a starting flag is marked in an Indicator table, all clients run for a fixed period of time and stop. The
throughput is calculated by dividing the total number of timestamps issued by the length of the fixed time
period. Figure 4.1 shows the result of this test. Apparently the server gets saturated at a total throughput of
about 360 timestamps per second, or about 30 million timestamps per day. Note that the timestamp generating

HBaseSI: Snapshot Isolation on Clouds 221

mechanism currently used by HBaseSI is the most straightforward solution a user can get by using bare-bones
HBase functionalities. Other more efficient timestamp generating mechanisms with much higher throughput
can also be adopted if the user desires, such as the one used by Google’s Percolator system [8] which generates
2 million timestamps per second from a single machine.

Fig. 4.1: Test 1, performance of the timestamp issuing mechanism through counter tables.

The goal of Test 2 is to measure the performance of the start timestamp issuing mechanism via the Com-
mitted table in terms of throughput, i.e., how many transactions can be allowed to start per second (in order
for a transaction to start, a start timestamp must be issued first) with an increasing number of concurrent
clients. Recall that the mechanism to obtain a start timestamp is different from getting a unique counter value
from one of the counter tables. Instead, a transaction needs to read the last row of the Committed table at
the time it starts and use the row key as its start timestamp. In this test, the clients all connect to the server
first and then wait for a signal in the Indicator table to start at the same time. During the test, a program is
run at the EC2 instance running the HBase server inserting a new row to the Committed table continuously,
mimicking the real-world scenario where the Committed table keeps growing in size because of newly committed
transaction records. The throughput is calculated in the same way as Test 1. Figure 4.2 shows the result for
Test 2. The throughput stabilizes at about 420 timestamps per second due to server saturation, slightly higher
than the result obtained from Test 1. The higher performance is expected because in Test 1 an atomic function
call to increment a common column value is issued each time a counter value is to be obtained by each con-
current client, potentially causing a blocking write conflict at the HBase server, while in Test 2, only scanning
the last row of the Committed table is necessary. The performance is thus satisfactory to the extent that the
start timestamp mechanism is not the limiting bottleneck for starting new transactions even if the mechanism
requires that every transaction should read from the Committed table at starting time.

Fig. 4.2: Test 2, performance of the start timestamp issuing mechanism.

The goal of Test 3 is to study the comparative performance of transactions with SI that contain a set of
read/write operations, against executions of the same number of read/write operations with bare-bones HBase,
for varying numbers of operations per transaction. In the test, we run 1 client only, vary the number of
operations per transaction and measure the time spent on each read/write operation. Additionally, in order to
control the performance overhead associated with scanning a growing Committed table (recall from Sect. 3 that
each SI read needs to scan the Committed table first to get the most up to date data version before actually
reading the data), after each client run, the Committed table is manually cleaned. (In this test, no previous
data versions exist, because the Committed table is cleaned up after each previous transaction execution and
data locations are only written to once, but a quick scan is still executed for every read). The result of the test
quantifies the performance overhead of transaction SI over bare-bones HBase. The results in Fig. 4.3 show the

222 C. Zhang and H. De Sterck

startup/commit overhead of the protocol and how it can be amortized as the number of read/write operations
per transaction grows. This indicates that the protocol is more efficient for transactions involving a larger
number of operations per transaction or transactions with longer inter-operation intervals (user “think time”
during user interactions) to better amortize the transaction startup/commit overhead.

Fig. 4.3: Test 3, comparative performance of executing transactions with SI against bare-bones HBase without
SI.

The goal of Test 4 is to measure the time needed to scan a column in a data table over a growing row
range (each row contains a data value in the column scanned). The expected result is a linear growth of time
corresponding to the number of table rows scanned. The result is used to show the necessity of using the Version
table when performing reads in order to avoid costly full scans of the Committed table on every read. In this
test, a single client is executed to scan a data table with a continuously growing row range. The test result is
shown in Fig. 4.4 and is exactly according to expectation with linear growth in time.

Fig. 4.4: Test 4, time to traverse a resultset against a varying number of rows to scan.

The goal of Test 5 is to measure the comparative performance of transactional SI with the use of the Version
table on workloads complying with the TPC-W benchmark [13], which is used widely for evaluating database
performance under OLTP loads. The TPC-W benchmark describes several different kinds of workloads with
mixed read/write operations corresponding to real-world e-commerce scenarios, such as online shopping. A
“browsing mix” is composed of transactions containing 95% read and 5% write operations; a “shopping mix”
is composed of 80% reads and 20% writes; and an “updating mix” is composed of 50% reads and 50% writes.
In the test, we run clients executing the above three kinds of workloads with a varying number of concurrent
clients, each executing a random number of reads/writes according to the above specifications with an average of
15 operations per transaction, upon a table with 10,000 data rows. We measure two things: overall throughput
(number of transactions per second) and average commit time for update transactions (the average time spent in
the commit process). The overall throughput includes both successful and aborted transactions and shows the
general system capacity in handling concurrent transactions. It is also interesting to see how much time is spent
in the CommitRequestQueue and the CommitQueue separately because for different types of mixed workloads,
the ratio of the number of update transaction requests and the number of actually committed transactions
is different. The result for total throughput is shown in Fig. 4.5. An interesting point for this result is the
comparative performance between these types of workloads. As we can see, as the number of concurrent clients
grows, the shopping mix has the lowest throughput while the browsing and update mix have similar throughput.
The reason why the shopping mix has the lowest throughput is because this mix actually has the most number

HBaseSI: Snapshot Isolation on Clouds 223

of successful update transactions processed among the three mix types: the browsing mix doesn’t have many
costly update transactions, and the updating mix doesn’t have many successfully committed update transactions
either because of the higher probability of having conflicts (and we count failed transactions in the throughput).
The sharp drop in throughput, especially for the updating mix, when there are 95 concurrent clients is because
of both the server saturation and the extra wait time in the CommitQueue.

Fig. 4.5: Test 5, general performance of executing transactions with SI under TPC-W workloads.

Results for the average commit time for all three types of mixed workloads are shown in Figs. 4.6, 4.7 and
4.8, respectively. As for the browsing mix (Fig. 4.6), update transactions are relatively rare (5%). Therefore
conflict probability is low. Transactions that get queued in the CommitRequestQueue are also likely to be able
to commit successfully in the end. Therefore transactions tend to spend almost the same time on average staying
in both queues. As for the shopping mix (Fig. 4.7), more update transactions are queued up for committing
after passing the commit request checking stage at the CommitRequestQueue. Because there are almost no
conflicts (the conflict rate will increase with a large number of concurrent clients, especially with respect to
the total number of data items under shared access) and the CommitRequestQueue is basically skipped for
most committing transactions, the wait time in the CommitQueue is much higher. As for the updating mix
(Fig. 4.8), because there is a much higher conflict probability than for the other two mix workloads, more
transactions are aborted at the checking stage in the CommitRequestQueue. Therefore the point at which the
wait time in the CommitQueue outruns the wait time in the CommitRequestQueue comes later than for the
shopping mix workload. The results in Figs. 4.6, 4.7 and 4.8 also indicate that the timeout threshold used in
the straggler handling mechanism should be set according to the type of mix workload and may need to be
adjusted according to the number of concurrent requests.

Fig. 4.6: Test 5, browsing mix wait time in both CommitRequestQueue and CommitQueue.

The goal of Test 6 is to test the effectiveness of the straggler handling mechanism. We use the “shopping mix”
from Test 5 with 19 concurrent clients and add an abort ratio at the end of each transaction. With an increasing
abort ratio, we measure the total throughput in terms of transactions per second. Because the artificially inserted
aborts occur at the end of transactions while transactions wait in the CommitRequestQueue after completing
all the reads/writes, we still count the aborted transaction into the calculation of the throughput. The failed
transactions become stragglers in the CommitRequestQueue table that have to be removed by live transaction
processes. The results show how random transaction faults affect the performance of the SI protocol. As seen
in Fig. 4.9, the system achieves throughput similar to the case with no artificially inserted faults (because we
also count the aborted transactions in the throughput calculation). We can also see from Fig. 4.10 that the
duration of successful transactions stays almost constant in the face of failures, indicating that the straggler
handling mechanism is effective in bounding healthy transaction duration.

224 C. Zhang and H. De Sterck

Fig. 4.7: Test 5, shopping mix wait time in both CommitRequestQueue and CommitQueue.

Fig. 4.8: Test 5, updating mix wait time in both CommitRequestQueue and CommitQueue.

5. Related Work. Several transactional systems exist for HBase, but none provide SI. The HBase project
itself includes a contributed package for transactional table management, but it does not support recovering
transaction states after region server failures. G-store [4] supports groups of correlated transactions over a
pre-defined set of data rows (called “Key Group”) specified for each group of transactions respectively, but
assumes that the number of keys in a Key Group is small enough to be owned by a single node. CloudTPS [10]
implements a server-side middleware layer composed of programs called local transaction managers (LTMs),
but introduces extra overhead of middleware deployment, data synchronization, and fault handling.

Only recently two relevant papers were published independently at almost the same time about achieving
snapshot isolation for distributed transactions, for HBase and for BigTable: we published a paper describing
our preliminary system (the predecessor of the system described in this paper) to support transactions with
SI on top of HBase [11], and Google published a paper about their system called “Percolator” [8] supporting
transactions with SI on top of BigTable. The two systems share many design ideas yet are different in some
major design choices.

HBaseSI is an extended and improved version of our preliminary system of [11]. It is similar to the
preliminary system and similar to Google’s Percolator [8] in that: all three systems are implemented as a client
library rather than a set of middleware programs and allow client transactions to decide autonomously when
they can commit (there is no central process to decide on commits); they all rely on the multi-version data
support from the underlying column store for achieving snapshot isolation, and store transactional management
data in column store tables; they all make use of some centralized timestamp issuing mechanism for generating
globally well-ordered timestamps; and after starting using either of the systems, users must use the systems
for all the subsequent data processing operations in order to guarantee data consistency. HBaseSI is superior
to the preliminary system in that: HBaseSI is the first system on HBase to support global strong SI rather
than the “gap-less” weak SI in the preliminary system; it uses a completely different mechanism in handling
distributed synchronization (HBaseSI uses distributed queues to guarantee a correct sequence of transaction
execution, while the preliminary system uses a complicated and inefficient mechanism to obtain snapshots);
the preliminary system is inefficient because its PreCommit table grows without bound and has to be searched
in its entirety by transactions attempting to commit; it provides a simple mechanism for handling stragglers,
whereas handling stragglers for the system proposed in [11] would be overly complicated.

In addition to the similarities listed above, HBaseSI shares with Percolator its support of global strong
SI. HBaseSI and Percolator are also very different in several other aspects: HBaseSI focuses on random access
performance with low latency whereas Percolator focuses on analytical workloads that tolerate large latency;
HBaseSI is non-intrusive to existing user data tables and stores the version information and transaction informa-

HBaseSI: Snapshot Isolation on Clouds 225

Fig. 4.9: Test 6, throughput seen at each client under a varying failure ratio.

Fig. 4.10: Test 6, average duration of successful transactions under a varying failure ratio.

tion in extra system tables, whereas Percolator is intrusive to existing user data and stores the same information
in two extra columns in every user tables (but this design decision of HBaseSI makes it less scalable than Perco-
lator concerning the number of concurrent transactions); HBaseSI supports non-blocking starts of transactions
and does not block reads, whereas Percolator may block reads while data is being committed which may harm
performance; HBaseSI uses distributed queues in handling synchronization and concurrency rather than using
traditional techniques such as data locks as in Percolator; and two concurrently committing transactions could
unnecessarily both fail in Percolator but not in HBaseSI. In short, the two systems are designed with different
purposes in mind and each may excel at one aspect and not another. Note also that the protocol described in
Percolator cannot be trivially ported onto HBase, because HBase does not support BigTable’s atomic single-row
transactions, allowing multiple read-modify-write operations to be grouped into one atomic transaction as long
as they are operating on the same row.

6. Conclusions and Future Work. This paper presents HBaseSI, a light-weight client library for HBase,
enabling multi-row distributed transactions with global strong SI on HBase user data tables. There exists no
other systems providing the same level of transactional isolation on HBase yet. HBaseSI tries to achieve several
design goals: achieving global strong SI across table boundaries; being non-intrusive to existing user data
tables; strictly enforcing the “first-committer-wins” rule for SI; supporting highly responsive transactions with
no blocking reads; and employing an effective straggler handling mechanism. The performance overhead of
HBaseSI over HBase is modest, especially for longer transactions involving a larger number of read and write
operations per transaction. Future work includes implementing some helpful tools to optimize disk usage and
possibly extending HBaseSI to increase its scalability by distributing the transactional metadata tables.

REFERENCES

[1] D. Agrawal, A. E. Abbadi, S. Antony, and S. Das, Data management challenges in cloud computing infrastructures,
Proc. DNIS’10 (2010), pp. 1–10.

[2] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil, A critique of ANSI SQL isolation levels,
Proc. of SIGMOD (1995), pp. 1–10.

[3] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes, and R. Gruber,
Bigtable: A Distributed Storage System for Structured Data, Proc. OSDI, USENIX Association (2010), pp. 205–218.

[4] S. Das, D. Agrawal, and A. El Abbadi, G-store: a scalable data store for transactional multi key access in the cloud, Proc.
SoCC ’10 (2010), pp. 163–174.

[5] K. Daudjee and K. Salem, Lazy Database replication with snapshot isolation, Proc. of VLDB (2006), pp. 715–726.

226 C. Zhang and H. De Sterck

[6] F. Farag, M. Hammad, and R. Alhajj, Adaptive query processing in data stream management systems under limited
memory resources, Proc. of the 3rd workshop for Ph.D. students in information and knowledge management, PIKM ’10
(2010), pp. 9–16.

[7] P. Helland, Life beyond distributed transactions: an apostate’s opinion, CIDR (2007), pp. 132–141.
[8] D. Peng and F. Dabek, Large-scale incremental processing using distributed transactions and notifications, Proc. OSDI,

USENIX Association (2010), pp. 1–15.
[9] J. Schad, J. Dittrich, and J. Quiané-Ruiz, Runtime measurements in the cloud: observing, analyzing, and reducing

variance, Proc. VLDB Endow. (2010), 3, 1-2, pp. 460–471.
[10] Z. Wei, G. Pierre, and C.-H. Chi, Scalable Transactions for Web Applications in the Cloud, Proc. of the Euro-Par Confer-

ence (2009), pp. 442–453.
[11] C. Zhang and H. De Sterck, Supporting multi-row distributed transactions with global snapshot isolation using bare-bones

hbase, Proc. of Grid2010 (2010).
[12] The Apache Software Foundation, An open-source, distributed, versioned, column-oriented store.

http://hbase.apache.org/, retrieved April 15, 2011.
[13] The Transaction Processing Performance Council, A transactional web e-Commerce benchmark.

http://www.tpc.org/tpcw/default.asp, retrieved April 15, 2011.

Edited by: Dana Petcu and Marcin Paprzycki
Received: May 1, 2011
Accepted: May 31, 2011

Scalable Computing: Practice and Experience

Volume 12, Number 2, pp. 227–238. http://www.scpe.org
ISSN 1895-1767

c© 2011 SCPE

PARALLELIZATION OF COMPUTE INTENSIVE APPLICATIONS INTO WORKFLOWS
BASED ON SERVICES IN BEESYCLUSTER

PAWEL CZARNUL∗

Abstract. The paper presents an approach for modeling, optimization and execution of workflow applications based on
services that incorporates both service selection and partitioning of input data for parallel processing by parallel workflow paths.
A compute-intensive workflow application for parallel integration is presented. An impact of the input data partitioning on the
scalability is presented. The paper shows a comparison of the theoretical model of workflow execution and real execution times.
The execution of this distributed workflow is compared to a highly parallel approach using MPI. Finally, results for an integrated
workflow/MPI approach are shown.

Key words: workflow management, service selection, data partitioning, parallel computing, numerical integration

1. Introduction. Parallel and distributed processing is now possible thanks to a variety of architectures,
application models and technologies. First, these are available for both shared memory and distributed memory
processing within HPC clusters [30]. Secondly, approaches such as grid, sky and cloud computing [5] allow
integration of services at a high level.

Several models and frameworks have been proposed for complex distributed applications. Quality of Service
(QoS) needs to be considered where resources are usually shared among various users requesting their own
jobs [13, 29, 35]. Such approaches need to offer enough flexibility in constructing a distributed application and
provide the ability to process input data in parallel. Ideally, the user should not be involved in low level details
such as selection of services for particular tasks or selection of resources to execute the code. The user should
define functional and QoS goals and rely on automatic selection to meet the goals.

2. Related Work. Parallel processing is currently being implemented at various levels within:
1. computing nodes using GPU programming [2], programming many processor cores,
2. local systems such as HPC clusters in which computing nodes are interconnected with a reasonably fast

interconnect such as Infiniband, Gigabit Ethernet etc. [6, 30],
3. at a distributed level using e.g. grid [17], cloud computing [5].

One of practical approaches for modeling complex distributed processing based on services is done using
workflow applications. A workflow application is modeled as an acyclic graph in which vertexes denote tasks to
be executed while directed edges dependencies between the tasks. For scheduling in utility grids [34]/workflow
scheduling in grids [31] for each task ti there is a set of services Si out of which one service is selected to execute
ti. Other attributes such as service costs are considered [33]. As proposed by [34, 35] the goal is to find the
best assignment of ti → (sk, tst

ik) where sk is a service able to execute task ti and tst
ik is the starting time of

execution of task ti using service sk. Execution of ti and tj on one sk must not overlap. The workflow execution
time should be minimized while keeping the cost of selected services below a predefined minimum [7, 8]. In the
context of typical business interactions, many more quality attributes are considered such as execution time,
cost, availability [7, 27, 36], accessibility [27], fidelity [9] or conformance [27], security [27], reputation [36] is
minimized. Usually no dependencies between or overlapping of services executing different tasks are considered
in these applications.

From the infrastructure point of view, several MPI [26] implementations have been traditionally used for
parallel programming. OpenMPI supports threads and MPI simultaneously. Additionally, several tools can be
used for parallel programming within nodes such as CUDA [2], OpenCL, Pthreads [30] etc.

For the distributed workflow model, there are several workflow management systems for grid computing.
Paper [32] provides a review and comparison of Gridbus, Kepler [23], Pegasus [16], Triana [25], P-GRADE
[22], Directed Acyclic Graph Manager (DAGMan), ICENI, GridFlow, GrADS, Askalon, UNICORE, Taverna,
GridAnt. These grid-oriented systems rely mainly on middlewares such as Globus Toolkit, Grid Application
Toolkit or other resource management systems for starting and management jobs. Business oriented systems
such as Meteor-S [3] incorporate support for BPEL for modeling workflows and use semantic service discovery
and composition. As suggested by [24], BPEL can also be used for grid environments. Input data can often be

∗Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Poland,
(pczarnul@eti.pg.gda.pl) http://fox.eti.pg.gda.pl/∼pczarnul.

227

228 P. Czarnul

defined as values, files or data streams [19], as in Gridbus. Input data can drive workflows as in Kepler [1]. The
input data from one or several preceding workflow tasks can be treated and processed in several ways [18].

3. Motivations. While this paper builds on the model presented in [14], the contribution of this paper is
as follows:

1. assessment of the impact of input data partitioning of input data on the scalability for a workflow with
parallel paths,

2. comparison of the theoretical model of processing in a workflow and real results,
3. assessment of the overhead of the parallelization using workflows with distributed services and a highly

parallel solution using MPI,
4. integration of parallel processing by parallel workflow paths and parallelization within services using

MPI.

4. Model of the Workflow Scheduling with Data Distribution. The model proposed by the author
is based on the workflow model with service selection [13, 35] and is extended to consider data distribution for
parallel paths of the workflow.

A directed graph G(V, E) represents a workflow in which nodes V correspond to tasks while edges E
represent task dependencies. At least one starting node with initial data and one termination node which
terminates computations are distinguished. The starting nodes do not have predecessors. Each node should
have a successor apart from the termination node. The model allows to define:

1. a sequence – a service assigned to the second task in a sequence successor is executed only after the
service selected for the predecessor has completed (Figure 4.1a),

2. fork – services assigned to the tasks following the forked task are executed in parallel provided these
were installed on separate processors (Figure 4.1b),

3. join – the service selected for the task to which other tasks are connected are executed only after each
of the predecessors has finished (Figure 4.1b).

The following parameters are distinguished following [14]:
• Si = {si0, si1, ..., si(|Si|−1)} – a set of services out of which one is selected to execute task ti,
• cij – the cost of processing a unit of data by service sij ,
• Nij – the node on which service sij was installed,
• spn – the speed of node n,
• Pij – the provider of service sij ,
• din

ij and dout
ij denote the sizes of the input and output data accepted and produced by service sij . These

are linked with formula dout
ij = fti

(din
ij) where fti

defines the size of output data for task ti based on
the input data size.
• di denotes the size of data processed by task ti.
• dijkl denotes the size of data to be sent from service sij to service skl. dout

ij can be sent and/or partitioned
into input files of successors. In particular, all the data can be sent to all the successors or it can be
partitioned into non-overlapping parts that will be distributed for parallel processing by the following
tasks.
• texec

ij (din
ij) – the execution time of service sij ,

• ttrijkl – additional time for data conversion between output/input formats if connected services are offered
by various providers,
• tst

i : i ∈ |V | – the time at which service sij chosen to execute ti starts processing it, we have ∀i,k:(vi,vk)∈E

tst
k ≥ tst

i +
∑

j texec
ij +

∑

j,l t
comm
ijkl +

∑

j,l t
tr
ijkl . texec

ij will be larger than 0 only for one j. Similarly, for

the given i and k tcomm
ijkl and ttrijkl will be larger than 0 only for one pair of l and k since only one service

per node i and one per node k will be selected.
• tworkflow – the workflow execution time i.e.

tworkflow = ttermination not∃q(vtermination, vq) ∈ E.
Traditionally, several optimization goals can be considered such as minimization of tworkflow with a bound

on the total cost of selected services i.e.
∑

din
ij cij < B where B is the budget (problem MIN T C BOUND)

and tworkflow is the time when the last service finishes. Problem MIN TC is minimization of vMIN TC =
αtworkflow +

∑

din
ij cij . α > 0.

It should be noted that some descriptions of services with respect to e.g. execution times or reliability may
not be accurate. An adaptive technique for learning of service reliability were proposed by the author and his

Parallelization of Compute Intensive Applications into Workflows based on Services in BeesyCluster 229

team in [15].

ti

a b c

ti ti’

si0,si1
si0

si’0=si1
si’1=si2

ti tk

tj tl

Fig. 4.1: Selection and Parallelization in the Model

4.1. Selection of Solutions and Data Parallelization. The proposed formulation allows to model
several issues typical of workflows composed of independent services offered and managed by various users:

1. selection of alternative solutions (services) si0, ..., si(|Si|−1) to particular task ti. This is possible thanks
to the well known service selection concept i.e. selecting only one service out of the ones defined for the
given task (one of several services is selected for task ti in Figure 4.1a).

2. data parallelism – partitioning of input data for parallelization of computations on this data. This can
be achieved in the model in several configurations, depending on the needs:
(a) parallelization of task ti where input data is divided and possibly processed by services si0 and si1

or si0 and si2 in parallel. Note that si1 and si2 are modeled as exclusive services which combines
selection with parallelization. Task ti is split into ti and t′i which are functionally equivalent
(Figure 4.1b) and initial services are assigned to these two tasks.

(b) parallelization of a complex task (composed of more than one task) by possibly execution of various
sub-solutions in parallel. Input data is divided into flows so that ti → tj and tk → tl are executed
in parallel. It can be that ti 6= tk and tj 6= tl (Figure 4.1c).

Assuming the user has access to services si0, ..., si(|Si|−1) for task ti, parallelization where the algorithm
determines partitioning of data between possibly all services, can be modeled as splitting services for many
tasks (in fact functionally equivalent) as in Figure 4.2 where ∀i,ks

′n
i0 = sin.

4.2. Real and Integer Data Sizes. Additional constraints on partitioning of data could be set e.g.
di ∈ Z dijkl ∈ Z for integer values suitable for partitioning of a set of e.g. pictures of same size for processing
in parallel. This makes the problem harder to solve but the algorithms proposed and discussed by the author
in Section 5 can handle this case.

4.3. Synchronization. In Figure 4.2 all services are synchronized on the following task tj which means

that even after s
′2
i0 has finished processing its portion of data, tj will not start until all s

′n
i0 have finished. If there

are tasks ti and tj which need to process the input data subsequently, the proposed model can allow pushing a
portion of data to the following task even if the previous steps on the other portions of data have not completed
yet. This can be accomplished as in Figure 4.3. Namely, as soon as t′i has finished processing its portion of
data, it can send results for processing by t′j without waiting for completion of processing by e.g. ti.

The question arises into how many virtual tasks processing of the given task should be split. This should
cover the number of services which can process the given task. In such a case, potentially all services for the
original task ti and tj could participate in parallel execution of the corresponding task with the possibility of
pushing parts of data from task ti to task tj even when execution of other parts of ti’s data is still in progress.
Furthermore, this could be set up to the potential number of partitions the initial data could be divided into
to allow pushing smaller portions of data sooner.

In one workflow there may be both tasks with multiple services (for selection of one service for task) and
virtual tasks with one service assigned to each of them meant for data parallelization. The former may be used

230 P. Czarnul

ti ti’

si0
si’ 0

ti’(n-1)

si’(n-1) 0

tj

Fig. 4.2: Data Parallelization

ti ti’

si0 si’ 0

ti’(n-1)

si’(n-1) 0

tj tj’ tj’(n-1)

sj0,...,sj(|S_j|-1)
sj0,...,sj(|S_j|-1)

sj0,...,sj(|S_j|-1)

Fig. 4.3: Data Parallelization without Synchronization
between Tasks

when there is a task to be executed on a portion of the input data where it is not possible to split data among
services or it would be too costly compared to the execution by one service (e.g. a conversion of an image to
another format). Data partitioning can be used when it is possible and beneficial to split the data and there
are enough services to execute in parallel.

5. Algorithms. If the graph contains only tasks with one service for each, the problem becomes how
to distribute data with possibly cost constraints. In this case and assuming that data can be divided into
chunks of any size, fast linear programming [28] can be used where variables denote the sizes of data processed
by particular services. This also assumes that the execution times for the serviceare linear functions of input
data size which does not have to be the case. For service selection, the literature suggests introducing integer
variables [3, 4, 36] that denote which service is selected for the particular task.

The author has proposed and implemented three different algorithms to solve the problem [14]:

1. genetic algorithm (GA) – in this case a solution is represented by a chromosome. It encodes both
selection of particular services for the tasks and also order of execution for pairs of parallel tasks in the
graph for which the order is not determined by the workflow graph.

2. mixed genetic algorithm and linear programming (MGALP) – in this case services are assigned to
the tasks by a genetic algorithm and data distribution for the given schedule is determined by linear
programming [28],

3. mixed integer linear programming (MILP) – similarly to the known approaches [36, 3, 4], integer
variables mean which service is selected for a particular task. Additionally though, real or integer
variables denote sizes of data flowing from task to task.

6. Management, Optimization and Execution of Workflow Applications in BeesyCluster. The
author has created a workflow management environment for modeling, scheduling and execution of workflow
applications, both for the proposed model [14] and also for dynamic selection of services at runtime [13].

The environment uses BeesyCluster as a middleware to access distributed services and is available at
https://lab527.eti.pg.gda.pl:10030/ek/Main at Faculty of Electronics, Telecommunications and Infor-
matics, Gdansk University of Technology, Poland.

BeesyCluster allows its users to access accounts on distributed resources through SSH and compile and
run applications, among others (Figure 6.1). Furthermore, such applications can be published as BeesyCluster
services to which access may be granted to other users. In particular, costs of running services can be defined.
BeesyCluster users have virtual purses from which can pay for services published by others. Similarly, users
may earn from others running their own services.

Furthermore, the workflow management environment allows:

1. definition of a workflow using a graphical interface (Figure 6.2),
2. selection of services and defining data flows between tasks [10, 12],
3. actual execution of the workflow in a distributed environment [10, 12].

Parallelization of Compute Intensive Applications into Workflows based on Services in BeesyCluster 231

BeesyCluster
server

cluster
BeesyCluster
server

server
database

ssh

ssh

ssh

company
server

WWW/Web services

cluster

clients

A

B
Sun

Sun

Sun

Sun

����
����
����
����

����
����
����
����

����
����
����
����

������

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

Fig. 6.1: BeesyCluster Architecture

Fig. 6.2: Workflow Editor in BeesyCluster

6.1. Compute Intensive Scientific Workflow: Adaptive Quadrature Distributed Integration.
As an example for demonstration of the goals defined in Section 3 a compute intensive application was imple-
mented by the author and analyzed. This application computes a numerical integrate of a given function on
the given range with a certain accuracy using the adaptive quadrature integration algorithm presented in [30].

6.1.1. Testbed Environment and Services. The testbed environment consists of 16 nodes installed at
the Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology. Each node
along with services installed on them was accessed by BeesyCluster using SSH. The relative speeds of 8 nodes
were 1 while the speeds of the other nodes were 0.575 for the application. Each node uses its local disks to store
input and output data. As an example function f(x) = sin(x)cos(sin(x)) + 1

x2 was integrated on given ranges.
The following services were developed:

partition a b rpf filecount – partitions range [a, b] recursively into the given number of files filecount and
subranges per file rpf so that the execution time per subrange is approximately similar. At the given
step, for each subrange [a,b] 10 points c0, ..., c9 are selected so that a < ci < b. Then the maximum
of areas of the triangles formed by (a, f(a)), (ci, f(ci)), (b, f(b)) is selected for each subrange [a, b]. Out
of all available subranges the one with the largest area is selected and partitioned into two subranges
[a, a+b

2], [a+b
2 , b]. The procedure is repeated until the desired number of subranges is generated.

integration – an application written in C that integrates all subranges from input files in its directory and
produces a single output file with extension out with the total integrate of the given subranges. The al-

232 P. Czarnul

gorithm divides the given subrange recursively like described above until the maximum area of triangles
is smaller than 0.000000001 in which case the integrate is approximated by a sum of rectangles.

adder – adds the values supplied in files with out extension supplied in its directory
Figure 6.3 presents the workflow in which the initial range [a, b] is partitioned into filecount files each

of which contains rpf subranges. Then the initial files with subranges are sent to separate nodes for parallel
processing. It is important to note that filecount must be sufficiently large to distribute files with input subranges
among parallel tasks for integration especially if services assigned to them run on nodes of different speeds.
Similarly, rpf can be set larger than 1 to further improve load balance since it increases the number of initial
subranges and makes their computation times more even. The model assumes that the processing time of each
input file is the same.

part i t ion

[a,b]

integrat ion adder

rpf ranges
in f i lecount
files

1 0

2 0

n 0

n+1 01

2

n

n paths, n>0

DF

distr ibuted
fork

t

t

t

s

s

s

s

Fig. 6.3: A Parallel Integration Workflow

6.1.2. Workflow Configurations and Results. The algorithm is able to adapt data distribution to
various speeds of processing nodes and also does it under budget constraints. The following configurations were
tested (optimization goals are noted):
MIN TC: granularity test (Figure 6.3) – for up to 8 nodes it is best to select 1 file per node as the nodes

have same speeds but vary the number of subranges. On the other hand, for 12 and 16 processors
we must increase the number of files to let the algorithm balance work between processors of different
speeds. Figure 6.4 presents execution times for these settings for range [1,1000]. Setting the number of
files or subranges too large causes too much overhead related to opening files, loop overhead with no
further gain in load balance. Finally, best settings were selected for following tests.

MIN TC:parallel (Figure 6.3) – execution times and corresponding speed-ups are shown in Figures 6.5 and
6.7 for three different ranges of [1, 250], [1, 1000] and [1, 2000]. It can be seen that the algorithm achieves
very good speed-ups for larger ranges even though there are various node speeds. For a small run the
overhead of the solution including preparation of directories on the nodes, copying of data take their
toll. In fact the speed-up for range [1,1000] is slightly better than for range [1,2000] presumably because
of some temporary load on one of the nodes during the runs. It also suggests that this is the upper
limit on the speed-up for this configuration as increasing the size does not increase the speed-up.

MIN T C BOUND: parallel under budget constraints (Figure 6.6) – we define the costs of services de-
pending on the clusters they are installed on and the time of day according to Table 6.1. Three logical
clusters are distinguished with 8, 4 and 4 nodes (with different costs) respectively. Figures 6.8 and 6.9
show the impact of decreasing the budget on the execution time of the workflow for two configurations:
clusters 1 and 2 (total of 12 nodes), clusters 1, 2 and 3 (total of 16 nodes) for day and night. Cluster
costs are the same as for the digital photography workflow since the same clusters were used. However,
for this particular integration code clusters 2 and 3 (the speed of each node is 0.575) are slower than
cluster 1 (the speed of each node is 1). The budget is varied from the minimum budget allowing full
parallelization, then 0.9 and 0.8 of this value. Clearly tightening the budget increases execution times
as the algorithm does not allow to pass input data to more expensive services causing the use of a
smaller number of cheaper but slower paths.

6.2. Comparison of Theoretical Model and Simulation Results. The image processing workflow
analyzed and tested in [14] is a good example for comparing theoretical execution times of the adopted model and

Parallelization of Compute Intensive Applications into Workflows based on Services in BeesyCluster 233

Fig. 6.4: Adaptive Integration on range [1,1000]: Execution Times [s] vs Number of Subranges per File (1-8
nodes) or Files Per Node (16 nodes)

Fig. 6.5: Adaptive Integration: Execution Times [s]

cost per second

Cluster services node count day night

1 s1 0 to s24 0 8 20 10
2 s25 0 to s36 0 4 10 20
3 s37 0 to s48 0 4 15 15

Table 6.1: Services and Cost per Processor Second for Testbed Clusters

simulation results as it involves transfers of large portions of data of different sizes for the three configurations
tested. The simulation results shown in [14] were compared to the theoretical model in Figure 6.10. The
parameters of the model in this case were computed as follows. The execution time of each path of the workflow

234 P. Czarnul

part i t ion

[a,b]

integrat ion adder

rpf ranges
in f i lecount
files

1 0

2 0

n 0

n+1 01

2

n

n paths, n>0

if the budget is l imited
for day simulations: services from cluster1 wil l be omitted f irst
as too expensive
for night simulations: services from cluster2 wil l be omitted f irst
as too expensive

cost of each service
depends on the cluster
it is installed on
cluster1: services s to s
cluster2: services s to s
cluster3: services s to s

DF
distr ibuted
fork

t

t

t
s

s s

s

1 0 8 0

9 0 12 0

13 0 16 0

Fig. 6.6: A Parallel Integration Workflow with Budget Constraints

Fig. 6.7: Adaptive Integration: Speed-up

including web album generation as the last workflow task is as follows: execution time = a + d
p
(c + e) + df

where d is the number of initial images, p the number of paths, a is an accumulated constant from startup
times, overhead for preparation of directories for each workflow node, e and c correspond to computation and
communication times and df corresponds to the execution time of Web album generation.

The execution times are known as are data sizes d. The execution times of the Web generation phase were
read from the system logs and thus it was possible to determine f . The execution time of web album generation
is always the same as requires the same number of images. Then linear regression was used to determine a and
c + e.

The simulation results are very close to the model (Figure 6.10) being slightly too optimistic regarding
performance. The source node is a bottleneck in copying data to several following nodes.

6.3. Integration of BeesyCluster and MPI and Overhead of the Solution. It is possible to assess
the overhead of the workflow support in BeesyCluster mechanism by comparing execution times to highly
dedicated parallel solutions run in the same environment. A C+MPI based implementation can be regarded
as a lower bound on the execution time of the service-based BeesyCluster workflow. Obviously neither the

Parallelization of Compute Intensive Applications into Workflows based on Services in BeesyCluster 235

Fig. 6.8: Adaptive Integration: Execution Time [s]
under Cost Constraints: Day

Fig. 6.9: Adaptive Integration: Execution Time [s]
under Cost Constraints: Night

Fig. 6.10: Comparison of Theoretical Model and Simulation Results

standard MPI nor grid-enabled versions such as MPICH-G2 [20], PACX-MPI [21] or BC-MPI [11] offer easy
integration of services with performance and cost aware optimization.

Distributed integration was used as an example in the following configurations:

MPI on 2 clusters. Two MPI environments each with 8 nodes were configured. The partitioning application
divides the initial range into a predefined number of subranges and saves them to the number of files
equal to the number of distinct MPI environments used (1 up to 8 nodes, 2 for 16 nodes in this case)
considering relative speeds of the latter. Subsequently, MPI applications launched on the clusters divide
the ranges between processes using MPI and compute results for their parts.

workflow in BeesyCluster with services using MPI. Two services were used each of which was imple-
mented as a parallel C+MPI application. For 1-8 nodes one service implemented by one MPI applica-
tion using from 1 to 8 nodes was used. For 16 nodes, two BeesyCluster services each of which ran an
MPI application on 8 nodes just like in the previous example. It allows to assess the overhead of the
BeesyCluster layer. Initial data was prepared as in the previous example.

workflow in BeesyCluster. The configuration considered in Paragraph 6.1 was used where the number of
services is equal to the number of nodes. Each service is a sequential application.

Figure 6.11 presents a comparison of speed-ups between these three solutions. The reference run used 1

236 P. Czarnul

Fig. 6.11: Performance Comparison of BeesyCluster Workflow and MPI: Speed-up

processor.

It can be seen that the MPI implementation is not far below the theoretical best result while the BeesyCluster
based implementations introduce slightly more overhead. It is not significant for the [1,1000] range but is
visible for short runs for range [1,250] and 16 nodes. This is because the overhead introduced by the Java EE
implementation is significant compared to the short execution time in this case. Nevertheless, for longer runs
the performance of the workflow solution is very good. Secondly, as expected the overhead of the workflow
with MPI-based services is much smaller than for a larger number of sequential services. The overhead of the
workflow with MPI-based services compared to an MPI-only implementation on 16 nodes for range [1,1000]
was 13 seconds. This encourages to use workflows with MPI-based services as it allows very easy integration
of services with scheduling and data partitioning incorporating performance and costs which is not available in
MPI implementations.

7. Summary. The paper formulated a problem on service selection and scheduling with data distribution
encountered in the integration of distributed services offered by various providers. Both the model and the
algorithm were implemented in BeesyCluster allowing to consume distributed services from various providers.
Additionally, an easy-to-use workflow editor and an execution engine were implemented. As an example,
a distributed numerical integration was constructed as a workflow application were prepared and executed
a distributed service-based environment. The solution achieves good speed-ups. It is able to minimize the
execution time and keep the total cost of selected services below a threshold. The paper demonstrates the
impact of input data partitioning on the scalability of the approach. Secondly, simulation results are compared
to the theoretical model which confirms its correctness. Finally, the overhead of the implementation is analyzed
compared to a pure parallel MPI implementation. Results for an integrated workflow/MPI solution are also
presented.

Acknowledgment. Research partially sponsored by research grant N N516 383534
“Strategies for management of information services in distributed environments”.

REFERENCES

[1] Kepler user manual, May 2008.
[2] CUDA Programming Guide 3.1. http://developer.download.nvidia.com/compute/cuda/3 1/toolkit/

docs/NVIDIA CUDA C ProgrammingGuide 3.1.pdf, June 2010.
[3] R. Aggarwal, K. Verma, J. Miller, and W. Milnor, Constraint driven web service composition in meteor-s, in Proceedings

of IEEE International Conference on Services Computing (SCC’04), 2004, pp. 23–30.

Parallelization of Compute Intensive Applications into Workflows based on Services in BeesyCluster 237

[4] R. Aggarwal, K. Verma, J. Miller, and W. Milnor, Dynamic web service composition in meteor-s, technical report,
LSDIS Lab, Computer Science Dept., UGA, May 2004.

[5] S. A. Ahson and M. Ilyas, eds., Cloud Computing and Software Services: Theory and Techniques, CRC Press, 2011. ISBN
978-1-4398-0315-8.

[6] R. Buyya, ed., High Performance Cluster Computing, Programming and Applications, Prentice Hall, 1999.
[7] G. Canfora, M. D. Penta, R. Esposito, and M. Villani, A Lightweight Approach for QoS-Aware Service Composition.

ICSOC 2004 forum paper, IBM Technical Report Draft.
[8] , Qos-aware replanning of composite web services, in Procs. of 2005 IEEE International Conference on Web Services,

vol. 1, Res. Centre on Software Technol., Sannio Univ., Italy, July 2005, pp. 121–129.
[9] J. Cardoso, A. Sheth, and J. Miller, Workflow quality of service, tech. report, LSDIS Lab, Department of Computer

Science, University of Georgia, Athens, GA 30602, USA, March 2002.
[10] P. Czarnul, Integration of compute-intensive tasks into scientific workflows in beesycluster, in Computational Science –

ICCS 2006, vol. 3993 of LNCS, Springer, 2006, pp. 944–947.
[11] , Bc-mpi: Running an mpi application on multiple clusters with beesycluster connectivity, in Proceedings of Parallel

Processing and Applied Mathematics 2007 Conference,, Springer Verlag, May 2008. Lecture Notes in Computer Science,
LNCS 4967.

[12] , A JEE-based Modelling and Execution Environment for Workflow Applications with Just-in-time Service Selection,
in proceedings of Grid and Pervasive Computing, Geneva, Switzerland, May 2009.

[13] P. Czarnul, Modeling, run-time optimization and execution of distributed workflow applications in the JEE-
based BeesyCluster environment, The Journal of Supercomputing, (2010), pp. 1–26. 10.1007/s11227-010-0499-7,
http://dx.doi.org/10.1007/s11227-010-0499-7.

[14] P. Czarnul, Modelling, optimization and execution of workflow applications with data distribution, service selection and
budget constraints in beesycluster, in Proceedings of 6th Workshop on Large Scale Computations on Grids and 1st Work-
shop on Scalable Computing in Distributed Systems, International Multiconference on Computer Science and Information
Technology, 2010, pp. 629–636. Wisla, Poland.

[15] P. Czarnul, M. Matuszek, M. Wjcik, and K. Zalewski, BeesyBees — agent-based, adaptive & learning workflow execution
module for BeesyCluster, in Faculty of ETI Annals, Information Technologies vol. 18, Gdansk, Poland, 2010.

[16] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M.-H. Su, K. Vahi, and M. Livny, Pegasus : Mapping
Scientific Workflows onto the Grid, in Across Grids Conference, Nicosia, Cyprus, 2004. http://pegasus.isi.edu.

[17] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, The Physiology of the Grid: An Open Grid Services Architecture
for Distributed Systems Integration, in Open Grid Service Infrastructure WG, June 22 2002. Global Grid Forum,
http://www.globus.org/research/papers/ogsa.pdf.

[18] T. Glatard, J. Montagnat, D. Lingrand, and X. Pennec, Flexible and Efficient Workflow Deployment of Data-Intensive
Applications On Grids With MOTEUR, International Journal of High Performance Computing Applications, 22 (2008),
pp. 347–360.

[19] Gridbus Project, Workflow language (xwfl2.0). gridbus.cs.mu.oz.au/workflow/2.0beta/ docs/xwfl2.pdf.
[20] N. Karonis and B. Toonen, Mpich-g2 – a grid-enabled implementation of the mpi v1.1 standard.

http://www.hpclab.niu.edu/mpi/, Department of Computer Science at Northern Illinois University and Mathe-
matics and Computer Science Division (MCS) at Argonne National Laboratory.

[21] R. Keller and M. Mller, The Grid-Computing library PACX-MPI: Extending MPI for Computational Grids.
www.hlrs.de/organization/amt/projects/pacx-mpi/.

[22] Laboratory of Parallel and Distributed Systems, MTA SZTAKI, Hungary, Parallel Grid Runtime and Application
Development Environment, User’s Manual, ver. 8.4.2.

[23] B. Ludascher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger-Frank, M. Jones, E. Lee, J. Tao, and Y. Zhao, Scientific
Workflow Management and the Kepler System, Concurrency and Computation: Practice & Experience, Special Issue on
Scientific Workflows, (2005).

[24] R.-Y. Ma, Y.-W. Wu, X.-X. Meng, S.-J. Liu, and L. Pan, Grid-enabled workflow management system based on bpel, Int.
J. High Perform. Comput. Appl., 22 (2008), pp. 238–249.

[25] S. Majithia, M. S. Shields, I. J. Taylor, , and I. Wang, Triana: A Graphical Web Service Composition and Execution
Toolkit, in IEEE International Conference on Web Services (ICWS’04), IEEE Computer Society, 2004, pp. 512–524.

[26] Message Passing Interface Forum, MPI-2: Extensions to the Message-Passing Interface Standard, July 1997.
[27] C. Patel, K. Supekar, and Y. Lee, A QoS Oriented Framework for Adaptive Management of Web Service based Workflows,

in Proceedings of the 14th International Database and Expert Systems Applications Conference (DEXA 2003), LNCS,
Prague, Czech Republic, September 2003, pp. 826–835.

[28] M. M. Syslo, N. Deo, and J. S. Kowalik, Discrete Optimization Algorithms, Prentice-Hall, 1983.
[29] M. Wieczorek, A. Hoheisel, and R. Prodan, Towards a general model of the multi-criteria workflow scheduling on the

grid, Future Generation Comp. Syst., 25 (2009), pp. 237–256.
[30] B. Wilkinson and M. Allen, Parallel Programming: Techniques and Applications Using Networked Workstations and

Parallel Computers, Prentice Hall, 1999.
[31] Yingchun, X. Li, and C. Sun, Cost-effective heuristics for workflow scheduling in grid computing economy, in GCC ’07:

Proceedings of the Sixth International Conference on Grid and Cooperative Computing, Washington, DC, USA, 2007,
IEEE Computer Society, pp. 322–329.

[32] J. Yu and R. Buyya, A taxonomy of workflow management systems for grid computing, Journal of Grid Computing, 3
(2005), pp. 171–200.

[33] J. Yu and R. Buyya, A budget constrained scheduling of workflow applications on utility grids using genetic algorithms, in
Workshop on Workflows in Support of Large-Scale Science, Proceedings of the 15th IEEE International Symposium on
High Performance Distributed Computing (HPDC 2006), Paris, France, June 2006.

[34] , Scheduling scientific workflow applications with deadline and budget constraints using genetic algorithms, Scientific

238 P. Czarnul

Programming Journal, (2006). IOS Press, Amsterdam.
[35] J. Yu, R. Buyya, and C.-K. Tham, Cost-based scheduling of workflow applications on utility grids, in Proceedings of the 1st

IEEE International Conference on e-Science and Grid Computing (e-Science 2005), IEEE CS Press, Melbourne, Australia,
December 2005.

[36] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Sheng, Quality driven web services composition, in Pro-
ceedings of WWW 2003, Budapest, Hungary, May 2003.

Edited by: Dana Petcu and Marcin Paprzycki
Received: May 1, 2011
Accepted: May 31, 2011

Scalable Computing: Practice and Experience

Volume 12, Number 2, pp. 239–255. http://www.scpe.org
ISSN 1895-1767

c© 2011 SCPE

DEEPG: DUAL HEAP OVERLAY RESOURCE DISCOVERY PROTOCOL FOR MOBILE
GRID

Y. MOHAMADI BEGUM∗AND M. A. MALUK MOHAMED†

Abstract. Inherent characteristics of mobile devices make resource discovery in mobile grid challenging. Adding to the
complexity is heterogeneity and hence multi-attribute management of these devices. Decentralized resource discovery using DHTs
incur maintenance overheads when changes in attributes are continuous and rapid. The paper proposes a novel dual heap non-DHT
overlay (DEEPG) for query resolution dealing with inherent mobile characteristics along with a mathematical model to estimate the
problem size. Simulation results show that DEEPG reduces search bound on query resolution and results in limited maintenance
overheads. The results also indicate that higher the query sum reduced is the number of lookups for exact match query resolution.

Key words: Mobile grid, Resource discovery, DHT, Multi-attributes, Overlay

1. Introduction. A computational grid constitutes a number of clusters, each of which may be under
different virtual organizations (VO) [16]. Integration of mobile devices into grid computing infrastructure has
been widely increasing. Mobile grid models [27, 52, 34] have evolved contributing to computational requirements
of grid users. Such mobile grids find applications in domains such as e-health, disaster management, multimedia
transfer and processing, and other context-sensitive applications. These applications demand resources involving
a variety of attributes including the location of the mobile node. Attributes of grid resources are either static or
dynamic. Static attributes of a resource include architecture type, memory configuration, CPU clock frequency,
operating system, etc. Dynamic attributes include CPU queue length, memory utilization, CPU utilization,
etc.

The volatile and dynamic environment of the mobile Grid calls for sophisticated mechanisms for resource
discovery and selection [30]. Discovery process in mobile grid needs to handle issues like node dynamism, node
mobility and heterogeneity with frequent attribute changes. Resource requirements of a job submitted to a grid
can be determined a priori using historic data or appropriate prediction techniques [46]. Query-based approaches
such as Globus MDS [15], Legion [44], Condor [33], etc. select candidate nodes from a pool of resources to satisfy
requirements specified by grid users in the form of queries. Query resolution requires up-to-date information
on widely-distributed resources. Organizing nodes in a mobile grid to facilitate query resolution is not trivial
because of the highly dynamic availability of the participating mobile nodes and continuous, rapid change(s) in
some of the attributes of the resources.

Centralized and hierarchical approaches for resource discovery in grid [12] are not suitable for resource
discovery with multiple dynamic-query attributes. Such approaches are prone to single point of failure, lead
to network congestion and also are not scalable [39]. Alternatively, P2P content distribution technology [2] is
widely used for large-scale resource sharing and discovery. Unstructured P2P networks [31] have a variety of
applications including resource discovery in grid [22]. In contrast to unstructured systems, DHTs (Distributed
Hash Table) are used to design structured P2P systems to avoid flooding of query messages [39] thus reducing
network traffic substantially. Some structured DHT-based systems [9, 13, 1] extend existing structured P2P
routing substrate [24, 5, 48] for large-scale resource discovery. Systems such as [28, 4] are non-DHT overlays.

The best possible job-resource pair can be chosen only with sufficient information on multiple attributes
and subsequent match-making. Query resolution is complex as the number of attributes describing a resource
increases. A mapping is required to map attributes in a multi-dimensional space into a single-dimensional one.
Space filling curves [51] perform such mapping to facilitate resource discovery. However, as the number of
attributes increases, they do not perform well because of locality problem. Further, if the data distribution is
skewed, it results in non-uniform query processing load for peers [39].

Various issues in existing DHT-based discovery protocols are as follows: (i) Few attributes of resources are
extremely dynamic requiring frequent updates in DHTs. For example, CPU utilization tends to be a continuously
changing attribute and sometimes bursty. The corresponding DHT needs to be updated to reflect the changes
in this attribute contributing to overheads proportional to the structure of the DHT; (ii) Different types of
attributes may require different indexing mechanisms. Therefore, systems especially those using multiple DHTs

∗Software Systems Group, M.A.M. College of Engineering, Tiruchirappalli, India, Email: ssg mohamadi@mamce.org
†Software Systems Group, M.A.M. College of Engineering, Tiruchirappalli, India, Email: ssg malukmd@mamce.org

239

240 Y. M. Begum and M. A. M. Mohamed

for multi-attribute management result in high maintenance overhead for DHT structures; (iii) A DHT peer acts
only as an index to the appropriate resource and hence it needs to send the information on suitable resource
to the requesting node. As the hash indices serve as only secondary index structures, additional mechanism
is required for locating nodes in the presence of network delays; iv) DHTs require every resource-value pair to
have a unique key, limiting its scalability when used for Grid resource discovery [36]. All these issues motivate
the use of a non-DHT overlay. The heap overlay proposed in this paper is a non-DHT overlay used to organize
the grid resources, instead of a separate hash index structure on it.

The rationale behind using heap data structure is analyzed here. The topology of the overlay network
dictates how the participating nodes can communicate with each other in resolving a query. The topology
should be robust enough to accommodate frequent joining and leaving of the nodes. In comparison with ring-
based topologies, a heap serves better. N being the number of nodes in a VO, a ring requires O (N) for
insertion, detection, and deletion. Insertion and deletion are done in constant time once the link to be modified
is identified. However to identify the link, on an average N/2 inspections are required. For a heap the order
of complexity is O (log (N)) and is better for large N. Of course, for very small values of N, the complexity
of the procedure causes more time for heap compared with ring. This advantage of the ring when N is small
can normally be ignored. Heap thus qualifies as the most appropriate overlay topology for large-scale resource
discovery in comparison with other data structures. Such an organization of resources as a heap is vital because
of complex search queries on large number of grid resources characterized by multiple attribute values.

Heap is a data structure with the ability to organize nodes based on arithmetic sum or individual values of
its attributes. DEEPG creates a two-level heap. In sum-heap, resources are arranged based on their attribute
sum and nodes with same attribute sum are clustered together. Resolving a query involves examining resources
for individual attributes. All resources whose attributes make a lesser sum are not qualified for assignment to the
job and hence not examined at all. This quickens query resolution process. At the second level is the attribute
heap organizing resources based on one of the attributes. Resources qualified from the first-level sum-heap are
examined in attribute heap to determine their fitness for the job. If these resources do not satisfy rest of the
attributes, the system search for resources with higher sum and repeat the search process.

The paper proposes a novel protocol to determine suitable node(s) to host a process as a part of local
scheduling of the cluster administered by a VO. DEEPG serves the problems associated with mobility and
resolves exact match queries for multi-attribute resource discovery in a dynamic grid. In addition to the
proposed protocol a mathematical model for determining the problem size is devised. The model calculates
total number of unique processors with all possible combinations of attributes together contributing a given
attribute sum. A single node serving as an index in the sum-heap, clusters resources whose attributes may differ
in attributes individually, but collectively representing the same attribute sum. Simulation results presented
show how DEEPG reduces the search bound by clustering all such resources with same attribute sum.

The rest of the paper is organized as follows. Section 2 presents the related work in this area of research.
In section 3 the background and system design are discussed. Section 4 describes the DEEPG protocol. In
section 5 an estimate of the problem size is presented. In section 6 various experiments and results obtained
are evaluated for performance. Section 7 concludes and gives an insight into future enhancements.

2. Related Work. Various decentralized resource discovery techniques in grid, driven by P2P network
model are investigated in [39]. Structured P2P resource discovery in grid is done by either using the existing
DHTs or by augmenting DHTs to support additional functionality. DHT-based P2P resource discovery systems
like Chord [24], CAN [47], Pastry [5] and Tapestry [8] are suitable for single-attribute queries and also fail to
handle fast-changing resource attributes. Therefore, some systems augmented these DHT routing substrates to
handle multiple-attribute queries. Such systems used either single DHT or multiple DHTs for resolving dynamic
multi-attribute range queries. Some example systems are discussed below.

In AdeepGrid [42], a d-dimensional attribute space for both static and dynamic attributes is mapped to
a single DHT network. Node dynamicity and changes in dynamic attribute(s) may sometimes map attribute
space to a different node and therefore results in maintenance overheads. LORM [19] relies on a single DHT to
distribute resource information among nodes in balance with its hierarchical structure and claims to incur low
overheads. SWORD [1] also uses a single DHT to locate a set of machines matching user-specified constraints
on both static and dynamic node characteristics, including both single-node and inter-node characteristics.
SWORD uses the same principle as Mercury [4], although the latter is non-DHT based overlay. Mercury requires
explicit load balancing mechanism as it does not apply hashing resulting in non-uniform data partitioning. Also

DEEPG: Dual Heap Overlay Resource Discovery Protocol for Mobile Grid 241

it creates a hub for each attribute and replicates data items on each hub. This is not suitable for a network
with high degree of dynamism in nodes.

Xenosearch [13] uses one DHT per attribute and resolves multi-attribute query by aggregating results from
every DHT. So it serves as a poor choice when number of attributes of resources is very high. Systems proposed
in [3, 43] are based on space filling curves [51] and have drawbacks as discussed earlier. Also they are DHT-based
in contrast to SOG [36] which does not use any DHT. However, SOG organizes grid nodes into groups based
on their statistical characteristics and cannot be used effectively in a mobile grid where resources vary in their
attributes quite often.

Adaptive [25] also supports updates and queries for both static and dynamic resource attributes, again using
multiple DHTs. When the attribute value changes to the extent that it is mapped to a new node, the previous
mapping is erased. Systems with multiple DHTs are affected by maintenance overheads and [53, 19, 45] attempt
at reducing these overheads. Multi-attribute addressable network (MAAN) [9] extends Chord [24] to support
multi-attribute and range queries. It maintains multiple DHTs, one per attribute. Nodewiz [41] maintains a
single distributed index and hence the update and query traffic is independent of the number of attributes.
DIndex [18] has a distributed indexing component in support of range queries.

CONE [6] is a distributed heap-based data structure layered on Chord [24]. CONE uses the DHT only for
node joins and departures, and not for querying. A tree based scheduling with heap sort is described in [29].
In majority of these systems, the cost of maintaining the structure of DHT(s) in the presence of potentially
frequent node joins and departures is a challenge. Further, in DHTs there is no direct support for complex
queries including range queries, aggregate queries and nearest-neighbor queries. Also a majority of these systems
employ consistent hashing [26] where removal or addition of a node changes only the set of keys owned by that
node with adjacent nodes. This leaves all other nodes unaffected and is ideal for a dynamic system. However,
in a heterogeneous mobile grid the adjacent node may have poor attributes. Such a node is forced to perform
additional data management because its neighbor(s) departed. This calls for frequent load balancing. So
consistent hashing may not hold good for a highly dynamic mobile grid.

Some non-DHT structured overlays attempt to handle the above issues by organizing overlays based on the
attributes of the resources. SkipNet [35] enables systems to preserve useful content and path locality, while Skip
tree graphs [17] support aggregation queries and broadcast/multicast operations. Mercury [4] is non-DHT-based
and creates a routing hub for each attribute in the application schema while RCT [49] organizes resources on the
basis of selected primary attributes. Other non-DHT overlays include ACOM [10], BATON [21] and multi-way
tree [20] structures. In [50] an attribute-based overlay is explored where each peer is characterized by a single
set of attributes and the peers satisfying a given range or k-nearest-neighbor query are looked up.

Challenges in resource management in mobile grid including resource discovery are addressed in [30, 32, 11].
The M-Grid approach [37] handles disconnected operation service in mobile grid, but fails to address the
heterogeneity issue. A proxy-based approach [23] handles mobility by grouping mobile devices located on the
same subnet and presenting the group as a single virtual resource. In [27] there is a central entity close to
the Base Station (BS) or on the BS that handles instability in mobile grid. To the best of our knowledge we
find no approaches that specify a structured topology for mobile nodes to facilitate discovery. DEEPG uses
an overlay topology that is simpler and incorporates strategy to handle mobility of devices while performing
resource discovery.

3. System Architecture.

3.1. System Model. The mobile grid for this work resembles the architecture as proposed in [38]. The
grid as shown in Fig. 3.1, constitutes a collection of various service areas called cells occupied by mobile nodes
(MN), each governed by a BS. Each cell is termed a Basic Service Set (BSS) as per the IEEE 802.11 based
wireless LAN nomenclature. All BS are connected by a wired network enabling them to communicate to
each other. A dedicated server of the grid called High-level Scheduler (HS) forwards job requests to BS after
determining one among the multiple BS. The BS in turn, does local scheduling by locating an appropriate node
using DEEPG to host the process or a migrated process, if any.

To realize a mobile grid, P2P system is an attractive architectural alternative to the traditional client-
server computing. A number of critical, real-time, computationally high-end applications can be successfully
implemented on a mobile P2P grid. Further, P2P network is self-organizing, which is a key advantage for
a dynamic network. They offer efficient search/location of nodes. The mobile grid here adopts a super-peer
network model, in which the BS acts as super-peer and all MNs in its BSS are peers. The HS submits a typical

242 Y. M. Begum and M. A. M. Mohamed

—

Fig. 3.1: A Mobile Grid connecting HS and BS

job-resource request pair to the BS to determine the suitable host. The BS uses DEEPG to allocate the process
peer(s) that matches the specified resource requirements.

3.2. Overlay Design. DEEPG is built on the notion of organizing the participating nodes of a VO to
perform local scheduling in it, in the form of a non-DHT overlay. A non-DHT overlay organizes various peers
in a structure, so as to facilitate logical connection among the peers. The overlay structure is derived using
the attribute information. The peers periodically inform and update their attribute information to their super
peer, the BS. The BS is kept aware of the node joins and departures. This information on peers gathered at
the BS is broadcast to all peers so that every peer updates its overlay information.

DEEPG helps in solving the exact match, dynamic multi-attribute resource discovery problem. The at-
tributes considered are dynamic and assumed to be in numeric form. The structure of the overlay is dictated by
the principle of heaps. A min-heap is a complete binary tree in which at every node the data stored at the node
is no more than the data at either child. There are two min-heaps here, one is the sum-heap and the other is the
attrib-heap. The sum-heap acts as centralized index server at the BS and the attrib-heap acts as distributed
heap in which nodes are arranged based on any one of the attributes, called primary attribute. Each node is
responsible for storing its own attributes and change its neighboring peers as and when required.

In DHT-based P2P networks, it is easy to keep multiple single attribute DHTs and select that parameter
with the least records to start checking on other attributes. If there are k attributes to be checked, the time
bound is k x n where n is the total number of nodes while searching for each attribute. The protocol attempts
to reduce this bound with the overlay design. If attributes are treated with equality, then the following heuristic
reduces the search space. When multiple objectives are to be satisfied, a weighted sum [14] approach helps and
it can be supplemented with optimization. Using the weighted sum approach, the sum-heap is constructed as
follows. For example, a unit of one is assigned for each of the attributes of the node. For every participating
node, the sum of attributes Suma is obtained. A centralized min-heap is constructed at the BS using Suma as
the value and individual nodes such that any node has a sum less than at either child. Table 3.1 shows some
sample nodes with three attributes each.

Let the second heap called the attrib-heap, be based on one of the attributes, say CPU frequency and nodes
be arranged in the form of a min-heap. This heap is distributed so that each node of this heap except the

DEEPG: Dual Heap Overlay Resource Discovery Protocol for Mobile Grid 243

Table 3.1: Nodes with 3 attributes

Node No. CPU(GHz) Memory(GB) Bandwidth (MBps) Suma

1 1 3 1 5
2 7 4 3 14
3 3 2 2 7
4 4 1 1 6
5 6 3 4 13
6 4 0 0 4
7 4 2 2 8
8 3 1 0 4
9 5 3 3 11
10 0 4 0 4
11 5 4 4 13
12 2 3 2 7
13 7 4 6 17

root node and leaf nodes are responsible for maintaining information on at most three neighbors namely the
parent and children if any. Each of the nodes obtained from comparison of sum in the first heap, now point
to attrib-heap. This results in a two-level heap. Figs. 3.2 and 3.3 represent corresponding sum and attribute
heaps for Table 3.1. In the sum-heap, multiple nodes with same sum are shown as a linked list and other nodes
simply as nodes of the heap. In attrib-heap, the nodes are arranged to preserve the ordering of a min-heap
based on their CPU capacity.

—

Fig. 3.2: Sum Heap for Table 3.1

If there is a requirement for a node with attributes, 5 GHz clock, 2 GB memory, and 1 USB2 port, the sum
is 5 + 2 + 1 = 8 (For simplicity, fraction values in attributes are rounded). Now it is easy to show that all nodes
with a sum of 7 or less are not suitable. However, a node with sum greater than or equal to 8 need not satisfy
all the requirements. For example, a node with 10 GHz clock but with 1 GB memory and no USB2 port has a

244 Y. M. Begum and M. A. M. Mohamed

—

Fig. 3.3: Attribute Heap for Table 3.1

sum of 11 but fails on the memory and USB2 port. This justifies the need for attrib-heap to be constructed.
The next section describes how DEEPG utilizes these two heaps for resolving queries.

4. DEEPG Protocol. A mobile grid is basically a finite set of clusters and DEEPG accomplishes resource
discovery in one such cluster of the grid. A node entering a BSS and which intends to participate in grid indicates
its willingness to the concerned BS. The BS in turn fixes the new node in the existing heaps (sum and attribute)
through heap sort. Similarly, any node that leaves the BSS again causes an update in the heaps. Being organized
as a heap, the join and leave operations consume O (log N) time. Similarly any change in attributes of the nodes
is periodically reflected in the heaps and is possible with the same time complexity. In sequel, the resource
discovery process of DEEPG is described. Let N be the total number of nodes in a cluster, participating in the
grid. The nodes are denoted as Si and each node is characterized by k attribute values namely v1, v2... vk.
DEEPG protocol comprises two phases for resolving an exact match query and employs one heap per phase.
Fig. 4.1 shows the query getting forwarded to the two heaps. Upon receipt of exact-match-query from HS,
the BS computes Sumq, the sum of the attributes specified in the query. Then it examines the sum-heap in
Phase-1. Those nodes whose Suma equals Sumq, that is S ={s1, s2...sN

′ } are located, discarding nodes whose

Suma is less than the Sumq. Thus the nodes to be examined is reduced from N to N
′

, where N
′

< N. Thus
DEEPG filters the candidate resources to a manageable number using the first heap.

In Phase-2, the second min-heap is considered where nodes are arranged in their increasing order of attribute
values. Nodes in S are now visited in the order as suggested in this attrib-heap (S reorganized as S

′

) and begin
the search. The first node in S

′

is located in the heap to make further comparisons so as to satisfy other
attributes. If this node is unable to satisfy the query criteria, the next node in S

′

is examined. The query thus
gets propagated until the desired node is located or until the sum set S

′

is exhausted.
If the resource needs are not satisfied by any node examined in S

′

, the next higher value in sum is considered
by visiting the subsequent nodes (neighbors) in the sum-heap and repeating the search. The difference in query
sum and next sum examined is termed as slack. Thus slack represents the degree by which query sum varies.

Table 4.1 depicts a sample of 10 nodes each with an attribute pair. Suppose the query involves search for
a processor with attribute pair (1, 4). Sumq is 5 and search in the sum heap reduces the search set S to 3
nodes. S has 3 nodes with attribute pairs: (3, 2), (4, 1), and (2, 3) whose Suma equals 5. Let the attrib-heap
be organized based on v1 and the set S is reordered now as S

′

= (2, 3), (3, 2) and (4, 1). Considering (2, 3)
first, it is found to satisfy processor speed, but fails on memory. Then the next faster processor (3, 2) also fails

DEEPG: Dual Heap Overlay Resource Discovery Protocol for Mobile Grid 245

Fig. 4.1: Query forwarded to heap overlays

Table 4.1: Ten nodes with two attributes and their sum

Node No. CPU(GHz) (v1) Memory(GB) (v2) Suma

1 1 3 4
2 7 4 11
3 3 2 5
4 4 1 5
5 6 3 9
6 4 2 6
7 5 3 8
8 5 4 9
9 2 3 5
10 7 4 11

at memory. Similarly processor with attribute pair (4, 1) fails on memory. So sum-heap is revisited to go one
level higher to examine processors with a sum of 6. Here the slack value is 1. This leads to a single processor
(4, 2) which also fails to satisfy the query. Then the processors with the sum of 7 are tried and again do not
qualify the search. Considering the next higher sum 8 there is just one processor (5, 3) which also fails. The
next higher sum 9 has 2 processors (6, 3) and (5, 4). To optimize resource use, pair (5, 4) is tried first as per
the reorganized sum set S

′

and this reports success.

There are two typical cases in these searches. First, there may be multiple nodes satisfying either Sumq

or Sumq+ slack with same attribute values. In that case, only the first node that satisfies the requirements is
selected. Second, a suitable node may not be found even after exhaustively searching all nodes reaching the
leaves of the heap. In this case, a failure is reported. Alternatively, the HS may redirect the query to another

246 Y. M. Begum and M. A. M. Mohamed

BS. Thus there can be one of three outputs: success without slack (exact match), success with slack and failure.

The DEEPG protocol works well for a grid as discussed above and takes care of node dynamism and
heterogeneity. If DEEPG is used in mobile grid, it should also handle node mobility and disconnections prevalent
in a mobile grid. MN could be self location-aware like a cell phone with GPS capability. Such a MN has the
facility to handle location specific activities built-in. The GPS devices have the map of the area of use built-in.
Any location specific query is answered by interrogating the built-in map. Therefore, it is sufficient to consider
the location specific activity of non-GPS MN alone. The issue of mobility especially for location specific activities
of non-GPS MN can be handled by having the location of the device linked to the BS. The location of the non-
GPS MN is best known to be within the signal range of the BS only and a change in location can be an attribute
updated by the BS whenever the device moves away from its range. Similarly, the BS of the non-GPS MN
into whose range the MN moves would update the location of the MN and handle location specific activities.
Making location specific activity thus anchored to the BS would solve the issue of mobility. Further, mobility
may result in unstable network leading to intermittent connections and poor bandwidth. Bandwidth being an
attribute, its changes is reflected periodically in the heaps. Intermittent connections and forced disconnections
are out of the scope of this work.

Mobile nodes may frequently operate in a doze mode or disconnect entirely from the network. In doze
mode, a mobile host is reachable from the rest of the system and thus when required, can be induced by the
system to resume its normal operating mode [7]. Therefore BS simply needs to inform the MN to change from
its doze mode to active mode, when it finds that a particular query request can be satisfied by that node. When
voluntarily disconnected from the network, the node prior to its departure from grid informs BS which in turn
updates the two heaps accordingly.

5. Estimating Problem Size. DEEPG has been proposed with a view to support resource discovery on
resources with multiple attributes. As the number of attributes increases, it is expected that total number of
resources to be compared for resolving a query increases. Here the relationship between these two factors is
examined so as to understand how the proposed protocol minimizes the number of comparisons.

In the sum-heap all nodes whose Suma is less than Sumq are rejected. The efficiency of the protocol
can thus be estimated by knowing how many nodes share same Suma. The number of nodes with the same
Suma can be recursively calculated. Thus the theoretical maximum of number of resources with k attributes
contributing same Suma can be estimated. The recursive algorithm is devised as follows. Let NOP be the
number of processors. Consider for example, nodes whose Suma is 4 with k attributes, where k is equal to 3.
Table 5.1 lists all resources with these combinations of attributes.

Table 5.1: Resource List with Suma = 4 and k = 3

Node No. CPU(GHz) Memory(GB) USB2Ports

1 4 0 0
2 3 1 0
3 3 0 1
4 2 2 0
5 2 1 1
6 2 0 2
7 1 3 0
8 1 2 1
9 1 1 2
10 1 0 3
11 0 4 0
12 0 3 1
13 0 2 2
14 0 1 3
15 0 0 4

From Table 5.1, it can be observed that for any Suma, there can be a deterministic number of unique
combinations of a set of attributes. Further recursion is terminated when any of these two conditions are met:
(1) NOP with 1 attribute is the number of attributes, which is 1 (as in Eq.5.2); (2) NOP with 0 attribute is the
number of attributes, which is 0 (as in Eq.5.3); NOP with Suma on k attributes is given by

DEEPG: Dual Heap Overlay Resource Discovery Protocol for Mobile Grid 247

NOP (Suma, k) =

0
∑

i=Suma

NOP (Suma − i, k − 1) (5.1)

NOP (Suma, 1) = 1 (5.2)

NOP (Suma, 0) = 0 (5.3)

Using the recursive equation Eq.5.1 the function for k attributes and any Suma can be obtained. NOP can
thus be calculated for any number of attributes and sum. Table 5.2 lists different NOP values for various values
of Suma and k. As an example, it can be observed that there are 15 unique processors with Suma = 4 and k
= 3 while 5 processors with Suma = 4 and k = 2; 66 unique processors with Suma = 10 and k = 3. That is,
if the query sum is 15 there can be 800 nodes each with 4 attributes which need to be examined as the worst
case. This implies that the complexity of query resolution increases with the increasing number of attributes as
well as the query sum.

Table 5.2: NOP for various Suma and k=2, 3, and 4

Suma NOP
k=1 k=2 k=3

0 1 1 1
1 2 3 4
2 3 6 7
3 4 10 16
4 5 15 30
5 6 21 50
6 7 28 77
7 8 36 112
8 9 45 156
9 10 55 210
10 11 66 275
11 12 78 352
12 13 92 442
13 14 105 546
14 15 120 665
15 16 136 800

The recursive equation thus helps in estimating the problem size and therefore its complexity. By selecting
at the Sum-heap as many processors as NOP are considered in case nodes exist with all possibilities. In a real
case, it is very rare that number of nodes (with same Sumaand k) equal NOP. Assuming the rare case, the
actual benefit would be less than the theoretical maximum. Also it should be noted that replicas of resources
are not considered while calculating NOP.

6. Experiments and Results. A node in a P2P network that cannot satisfy the query criteria in general,
forwards the query to other nodes by unicast, multicast, flooding, etc. The node receiving the request forwards
the query to other nodes in case it is unable to answer the query. Thus irrespective of whether the search is
in structured or unstructured P2P, efficiency of resource location policy is closely dependent on the request
forwarding strategy. To evaluate the proposed request forwarding strategy using DEEPG, we are interested to
find answers for the following questions:

1. DEEPG filters the candidate resources to a manageable number using the sum-heap depending on the
query sum. What is the relation between query sum and number of resources ignored from examination for
successful attempts (with or without slack) and failed attempts? How to generate queries that will fall under
these categories? Is there any relation between slack value and number of resources examined?

2. What is the relation between number of attributes and the query resolution time?

248 Y. M. Begum and M. A. M. Mohamed

3. How does the query resolution time vary depending on whether the resource sought is located in the
sum-heap at higher levels, mid-levels, or as the leaves?

4. Can the proposed dual heap withstand/support frequent node joins and departures?
5. What is the impact of frequency of attribute changes over query resolution time?

The proposed resource location protocol DEEPG was experimented using GridSim [40], a Java-based grid
simulation toolkit. Using GridSim, a mobile computational grid was realized. The resulting environment consists
of multiple users and resources with multiple attributes. Each user has different requirements of resources which
are sent as a query to one of the nodes designated as a BS. Depending on the experiment, these queries are
either specified or generated randomly. The broker entity in GridSim is emulated as BS and it is delegated the
responsibility of super-peer. Although a grid machine can have more than one CPU, for simplicity it is assumed
as one Processing Element per machine per resource. Henceforth, the terms resource, processor, device and
node are interchangeably used.

6.1. Successful and Failed Attempts. Given N nodes in a cell, a query may be resolved by comparing
a minimum of 1 and a maximum of N number of nodes. The result of query resolution can be either a successful
attempt with or without slack or it can be a failure. For experiment and analysis purpose, framing sample
queries that will fall under any of the above three categories is discussed below.

Say for example, when generating nodes with attribute units GHz, GB, and USB2, for every sum greater
than 2, a minimum value of 1 is assigned for each of the attributes. Therefore, a sum of 4 has combinations
namely, (2, 1, 1), (1, 2, 1) and (1, 1, 2). Every other sum vector would have at least one zero. These combinations
thus get dropped. While generating queries, let the queries specify a minimum of 1 for each attribute. These
are queries satisfied without slack (QWS). Queries with at least one zero in their attributes are generated in
order to get queries that do not get satisfied of a given sum. This query demands Suma from 2 attributes,
whereas all processors have a maximum of (Suma-1) from 2 attributes. Thus these queries would cause failure
at the initial sub tree and hence we have to look for nodes with at least (Suma+1) sum. These are queries that
are satisfied with a slack value (QS).

All queries satisfying the restriction that each attribute is at least 1 are generated to yield success as
discussed above. But in practice, it is not necessary that an application needs some GHz. A simple store and
read application does not require processing speed as it is controlled by the speed of the communication link. An
application that does not require storage of results when the MN gets switched off does not require USB2 port.
An application that copies a file from the BS to a USB2 attached drive does not need GB memory. Encouraged
by these examples, another set of queries was generated including a zero in one of the attributes. These queries
would demonstrate the performance of the protocol under failure mode from the immediate sub-tree.

To generate a query that would eventually fail (QF) after looking at all sums in the complete heap, first
the maximum GHz, GB, and USB2 attribute values are recorded. A query that demands one more than the
maximum recorded can be generated. Such query requirements therefore cannot be satisfied resulting in failure.
For example, if all the processors have a maximum of 2 USB2 ports, looking for a processor with 3 USB2 ports
would result in global failure (QF).

Using the above procedure sample queries were generated for searching from a random set of resources.
Figs. 6.1 and 6.2 plot various query sum values against the number of resources discarded for all the three cases
of queries QWS, QS, and QF. From these graphs we observe that the number of resources discarded increases
with the increase in query sum. In the sum-heap, with the increase in the query sum, the distance between
the node satisfying the sum and the root node increases. This leads to an increased number of nodes getting
discarded from examination. If the query sum is the highest, the node satisfying the same is located in one
of the leaves of the sum-heap. A drastic increase in number of nodes ignored from examination and hence a
reduction in query resolution time is found in such cases.

Using the above procedure sample queries were generated for searching from a random set of resources.
Figs. 6.1 and 6.2 plot various query sum values against the number of resources discarded for all the three cases
of queries QWS, QS, and QF. From these graphs we observe that the number of resources discarded increases
with the increase in query sum. In the sum-heap, with the increase in the query sum, the distance between
the node satisfying the sum and the root node increases. This leads to an increased number of nodes getting
discarded from examination. If the query sum is the highest, the node satisfying the same is located in one
of the leaves of the sum-heap. A drastic increase in number of nodes ignored from examination and hence a
reduction in query resolution time is found in such cases.

DEEPG: Dual Heap Overlay Resource Discovery Protocol for Mobile Grid 249

—

Fig. 6.1: Success without slack: query sum vs number of resources discarded

—

Fig. 6.2: Success with slack:query sum vs number of resources discarded

In the case of QS type of queries, the slope we find in Fig. 6.2 is a function of slack. Experiments were
conducted with different slack values. As the slack value increases, the number of resources discarded increases
with increasing query sum. Further, higher the slack value, more is the number of resources discarded. In Fig. 6.3
for QS type of queries, number of resources is plotted against number of resources examined for different slack
values. Interestingly, we find that there is again a linear relationship between these two values. This indicates
that slack value has an effect on both resources examined as well as resources discarded.

250 Y. M. Begum and M. A. M. Mohamed

—

Fig. 6.3: Success with slack:query sum vs number of resources examined

—

Fig. 6.4: Failure to satisfy a query: number of resources vs number of resources discarded

In the case of QF type of queries, query sum has no effect on query resolution time. This is because failure is
reported only after traversing the entire sum-heap. However, we infer from Figs. 6.4 and 6.5 that both number
of resources discarded as well as examined is proportional to total number of resources. This is again justified
because irrespective of the position of the node representing query sum in sum-heap, search continues and failure
is reported only after exhaustive checking.

6.2. Number of Attributes and Query Resolution. The number of attributes that describe a resource
affects query resolution time. This is evident from Fig. 6.6 that for k=1, number of resources examined are less
and this quantity increases as the k value increases. A resource that satisfies one attribute specified in a query
need not satisfy rest of the attributes. Therefore, other resources are examined so as to evaluate their fitness
with respect to all other attributes. Thus number of resources examined increases with the increase in value of
k as we increase the total number of resources. As shown in Fig. 6.6 there are some values that do not satisfy

DEEPG: Dual Heap Overlay Resource Discovery Protocol for Mobile Grid 251

—

Fig. 6.5: Failure to satisfy a query: number of resources vs number of resources examined

—

Fig. 6.6: Effect of number of attributes

this linearity. This is due to the fact that there are instances where a resource examined may satisfy more than
one attribute at the first instance itself without calling for further resources to be examined.

6.3. Position of the Resource in a Heap. In the attrib-heap where the nodes are arranged on one
parameter, say effective processing speed, query resolution time is saved by rejecting all nodes with processing
speed less than the required speed. After these close-to-root processors are rejected, we are forced to check
every node until success or we exhaust all nodes and declare failure. This exhaustive search has a time bound
of N, the number of nodes with the same sum. Therefore, the time required is log (N) at the sum-heap and
(N) at the attrib-heap. Fig. 6.7 shows a comparison of query resolution time with resources available in the
different levels of the sum-heap. Values are plotted by varying number of resources as 10, 20 and 30. We find
that number of comparisons required increases with the position of resource in the sum-heap. That is, if the
resource is in the higher levels close to the root node in sum-heap, number of comparisons is less and vice versa.

252 Y. M. Begum and M. A. M. Mohamed

—

Fig. 6.7: Effect of number of attributes

6.4. Dynamism of nodes. To speed up the process, every node retains the attributes used earlier when
the attributes change calling for a new arrangement. Let the attrib-heap be built based on processing speed
of nodes. For example, if a node had effective free processing speed of 5.0 GHz and it becomes 5.5 GHz as it
finished one task, it uses the earlier attributes to locate the current nodes in both the sum-heap and the attrib-
heap. Then we find the new position using the new attributes. Now the links are adjusted. Link adjustments
consume constant time in a heap. The search complexity in sum-heap is log (N) and that of attrib-heap is (N).
Since we keep the nodes in each attrib-heap small, it could be treated as a constant. Thus the time complexity
is log (N).

As regards a topology such as a ring, it requires O (N) for insertion, detection, and deletion. The insertion
and deletion are constant time once the link to be broken is identified. However to identify the link, on an
average N/2 inspections are required. For a heap the order is O (log (N)) and is better for large N. For very
small N, the complexity of the procedure causes more time for heap compared with ring. This advantage of the
ring when N is small is normally ignored.

6.5. Frequency of attribute changes. The analysis given above holds good for attribute changes also.
Hence the order of complexity again is log (N).

7. Conclusion. There is an interesting property in our approach to resource discovery. In the sum-heap
we select all nodes satisfying Sumq. On matching attributes of these selected nodes with individual attributes
in Sumq, we may find that at least one attribute may not match the query requirement. So we may fail to find
a match. So we move to the node in sum-heap, with sum more than the sum of attributes. The difference is
called slack. If we need x bandwidth, in the sub tree we check only mobile nodes with bandwidth values x, x+1
...x+slack. If we take a mobile node with (x + slack + 1) or more bandwidth, at least one other attribute may

DEEPG: Dual Heap Overlay Resource Discovery Protocol for Mobile Grid 253

be smaller. DEEPG can be modified to check for this condition and thus we need not search the sub tree until
we reach the leaves. We may reach some leaves and very rarely all the leaves of the sub tree. Undoubtedly this
will improve the efficiency of the protocol.

In this paper, DEEPG has been proposed to locate resources with exact and approximate attribute value
(when no resources satisfy the requirement exactly). DEEPG can be modified to locate all resources with
attribute values larger (or smaller) than a certain number depending on the QoS demands of the grid user.
Resource discovery systems built on Chord [24] for N number of nodes, incur a worst-case time complexity of
O (N) to locate a node and also O ((log N) 2) to rearrange to accommodate joins and leaves. In contrast,
the proposed heap-based overlay has a time complexity of O (log N). Further, when peers in DHTs such as
Chord [24], CAN [47], Pastry [5] and Tapestry [8] maintain an index of O (log N) peers, the proposed heap
is simpler in that it has a maximum of only three neighbors including its parent and possibly two children.
Another factor that makes DEEPG superior is that there is no need for load balancing as done in other DHTs
using consistent hashing or any other explicit mechanisms. This is because, we do not create a distributed
index like other DHTs, but we simply organize the overlay based on either the sum of attributes or one of the
attributes. DEEPG can be extended to handle range queries also. Further, it requires only a small modification
to consider static attributes for query resolution.

Acknowledgments. Special thanks to Prof. M.Ibramsha for many substantive discussions on this material
and comments on the text.

REFERENCES

[1] J. Albrecht, D. Oppenheimer, A. Vahdat, and D. A. Patterson, Design and implementation tradeoffs for wide-area
resource discovery, ACM Transactions on Internet Technology, 8 (2008).

[2] S. Androutsellis-Theotokis and D. Spinellis, A survey of peer-to-peer content distribution technologies, ACM Computing
Surveys, 36 (2004).

[3] A. Andrzejak and Z. Xu, Scalable, efficient range queries for grid information services, in Proceedings of the Second IEEE
International Conference on Peer to- Peer Computing (P2P 02), 2002, p. 33.

[4] A.R.Bharambe, M.Agarwal, and S.Seshan, Mercury: supporting scalable multi-attribute range queries, in In SIGCOMM04:
Proceedings of the 2004 conference on Applications, technologies, architectures, and protocols for computer communica-
tions, 2004, pp. 353–366.

[5] A.Rowstron and P.Druschel, Pastry: Scalable, decentralized object location and routing for large-scale peer-to peer systems,
in Proceedings of IFIP/ACM International Conference on Distributed Systems Platforms, 2001, pp. 329–359.

[6] R. Bhagwan, P. Mahadevan, V. G, and G. M. Voelker, Cone: A distributed heap-based approach to resource selection,
Tech. Report CS2004-0784, UCSD, 2004.

[7] A. B.R.Badrinath and T.Imielinski, Impact of mobility on distributed computations, ACM SIGOPS Operating Systems
Review, 27 (1993), pp. 15–20.

[8] B.Y.Zhao, J.D.Kubiatowicz, and A.D.Joseph, Tapestry: An infrastructure for fault-tolerant wide-area location and routing,
Tech. Report UCB/CSD-01-1141, UC Berkeley, Apr 2001.

[9] M. Cai, M. Frank, J. Chen, and P. Szekely, Maan: A multi-attribute addressable network for grid information services,
J. of Grid Computing, (2004).

[10] S. Chen, B. Shi, S. Chen, and Y. Xia, Acom: Any-source capacity-constrained overlay multicast in non-dht p2p networks,
IEEE Transactions on Parallel and Distributed Systems, 18 (2007).

[11] D. Chu and M. Humphrey, Mobile ogsi.net: Grid computing on mobile devices, in Proceedings of the 5th IEEE/ACM
International Workshop on Grid Computing (Grid2004), Nov 2004.

[12] D. Cokuslu, A. Hameurlain, and K. Erciyes, Grid resource discovery based on centralized and hierarchical architectures,
International Journal for Infonomics, 3 (2010).

[13] D.Spence and T.Harris, Xenosearch: Distributed resource discovery in the xenoserver open platform, in Proceedings of the
12th IEEE International Symposium on High Performance Distributed Computing (HPDC03), 2003, p. 216.

[14] A. A. Fatos Xhafa., Computational models and heuristic methods for grid scheduling problems, Future Generation Computer
Systems, 26 (2010), pp. 608–621.

[15] I. Foster and C. Kesselman, Globus: A metacomputing infrastructure toolkit, International Journal of Supercomputer
Applications, 11 (1997), pp. 115–128.

[16] I. Foster and C. Kesselman, The grid: Blueprint for a new computing infrastructure, Morgan Kaufmann Publishers, 1998.
[17] GonzaLez-BeltraN, P.Milligan, and P.Sage, Range queries over skip tree graphs, Computer Communications, 31 (2008),

pp. 358–374.
[18] M. Hentschel, M. Li, M. Ponraj, and M. Qi, Distributed indexing for resource discovery in p2p networks, in 9th IEEE/ACM

International Symposium on Cluster Computing and the Grid, 2009.
[19] H.Shen, A.Apon, and C.Xu, Lorm: Supporting low-overhead p2p-based range-query and multi- attribute resource manage-

ment in grids, in Proceedings of ICPADS, 2007.
[20] H.V.Jagadish, B.C.Ooi, K.L.Tan, Q.H.Vu, and R.Zhang, Speeding up search in peer-to-peer networks with a multi-way

tree structure, in Proceedings of SIGMOD2006, 2006, pp. 1–12.

254 Y. M. Begum and M. A. M. Mohamed

[21] H.V.Jagadish, B.C.Ooi, and Q.H.Vu, Baton: A balanced tree structure for peer-to-peer networks, in Proceedings of the 31st
International Conference on Very Large Data Bases (VLDB), 2005, pp. 661–672.

[22] A. Iamnitchi, I. Foster, and D. C. Nurmi, A peer-to-peer approach to resource discovery in grid environments, in Proceed-
ings of the 11th Symposium on High Performance Distributed Computing, 2002, p. 419.

[23] S. Isaiadis and V. Getov, Integrating mobile devices into the grid: Design considerations and evaluation, in Proceedings of
the International Euro-Par Conference (Euro-Par 2005), 2005.

[24] I.Stoica, R.Morris, D.Karger, M.F.Kaashoek, and H.Balakrishnan, Chord: A scalable peer-to-peer lookup service for
internet applications, in SIGCOMM 01: Proceedings of the 2001 conference on Applications, technologies, architectures,
and protocols for computer communications, 2001, pp. 149–160.

[25] J.Gao and P.Steenkiste, An adaptive protocol for efficient support of range queries in dht-based systems, in Proceedings of
the 12th IEEE International Conference on Network Protocols, 2004, pp. 239–250.

[26] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, , and D. Lewin, Consistent hashing and random trees:
distributed caching protocols for relieving hot spots on the world wide web, in Proceedings of the twenty-ninth annual
ACM symposium on Theory of computing, 1997, pp. 654–663.

[27] S. Kurkovsky, Bhagyavati, A. Ray, and M. Yang, Modeling a grid-based problem-solving environment for mobile devices,
in Proceedings of the IEEE International Conference on Information Technology: Coding and Computing (ITCC-04),
2004.

[28] L.Gong, Jxta: a network programming environment, IEEE Internet Computing, 5 (2001), pp. 88–95.
[29] F. Li, D. Qi, L. Zhang, X. Zhang, and Z. Zhang, Research on novel dynamic resource management and job scheduling in

grid computing, in Proceedings of the First International Multi-Symposiums on Computer and Computational Sciences
(IMSCCS 2006), 2006.

[30] A. Litke, D. Skoutas, and T. Varvarigou, Mobile grid computing: Changes and challenges of resource management
in a mobile grid environment, in Proceedings of the 5th International Conference on Practical Aspects of Knowledge
Management (PAKM 2004), Dec 2004.

[31] Q. Lv, P. Cao, and E. Cohen, Search and replication in unstructured peer to peer networks, in Proceedings of the 16th
international conference on Supercomputing (ICS 02), June 2002, pp. 84–95.

[32] D. Millard, A. Woukeu, F. Tao, and H. Davis, Experiences with writing grid clients for mobile devices, in Proceedings of
the 1st International ELeGI Conference, 2005.

[33] M.Litzkow, M.Livny, and M. Mutka, Condor a hunter of idle workstations, in Proceedings of the 8th Int. Conf. on
Distributed Computing Systems (ICDCS 88), June 1988, pp. 104–111.

[34] M. Mohamed, An object based paradigm for integration of mobile hosts into grid, International Journal of Next-Generation
Computing, 2 (2011).

[35] N.J.A.Harvey, M.B.Jones, S.Saroiu, M.Theimer, and A.Wolman, Skipnet: A scalable overlay network with practical
locality properties, in Proceedings of Fourth USENIX Symposium on Internet Technologies and Systems (USITS03),
2003, pp. 113–126.

[36] A. Padmanabhan, S. Ghosh, and S. Wang, A self-organized grouping (sog) framework for efficient grid resource discovery,
Journal of Grid Computing, 8 (2010), pp. 365–389.

[37] S.-M. Park, Y.-B. Ko, and J.-H. Kim., Disconnected operation service in mobile grid computing, in Proceedings of the
International Conference on Service Oriented Computing (ICSOC 2003), 2003.

[38] P.Ghosh, N.Roy, and S.K.Das, Mobility-aware efficient job scheduling in mobile grids, in First IEEE International Workshop
on Context-Awareness and Mobility in Grid Computing (held in conjunction with CCGrid 2007), 2007, pp. 701–706.

[39] R. Ranjan, A. Harwood, and R. Buyya, Peer-to-peer-based resource discovery in global grids: a tutorial, IEEE Communi-
cations Surveys & Tutorials, 10 (2008), pp. 6–33.

[40] R.Buyya. and M.Murshed, Gridsim: a toolkit for the modeling and simulation of distributed resource management and
scheduling for grid computing, Concurrency and Computation: Practice and Experience, 14 (2002), pp. 1175–1220.

[41] S.Basu, S.Banerjee, P.Sharma, and S.Lee, Nodewiz: peer-to-peer resource discovery for grids, in Proceedings of the Fifth
IEEE international Symposium on Cluster Computing and the Grid (CCGrid’05), 2005.

[42] S.Cheema, M.Muhammad, and I.Gupta, Peer-to-peer discovery of computational resources for grid applications, in Pro-
ceedings of the 6th IEEE/ACM International Workshop on Grid Computing (Grid05), 2005, pp. 179–185.

[43] C. Schmidt and M. Parashar, Flexible information discovery in decentralized distributed systems, in Proceedings of the
12th IEEE International Symposium on High Performance Distributed Computing (HPDC03), 2003.

[44] A. S.Grimshaw and W. A.Wulf, The legion vision of a worldwide computer, Communications of the ACM, 40 (1997),
pp. 39–45.

[45] H. Shen and Z. Li, Spps: A scalable p2p-based proximity-aware multi-resource discovery scheme for grids, in Proceedings of
IEEE Military Communications Conference (MILCOM 08), 2008, pp. 1–7.

[46] S.Hotovy, Workload evolution on the cornell theory center ibm sp2, in Job Scheduling Strategies for Parallel Proc. Workshop
(IPPS 96), 1996, pp. 27–40.

[47] S.Ratnasamy, P.Francis, M.Handley, R.Karp, and S.Schenker, A scalable content-addressable network, in In SIG-
COMM01: Proceedings of the 2001 conference on Applications, technologies, architectures, and protocols for computer
communications, 2001, pp. 161–172.

[48] S.Rhea, D.Geels, T.Roscoe, and J.Kubiatowicz, Handling churn in a dht, Tech. Report UCB//CSD-03-1299, UC Berkeley,
Dec 2003.

[49] H. Sun, J. Huai, Y. Liu, and R. Buyya, Rct: A distributed tree for supporting efficient range and multi-attribute queries in
grid computing, Future Generation Computer Systems, 24 (2008), pp. 631–643.

[50] M.-T. Sun, C.-T. King, W.-H. Sun, and C.-P. Chang, Attribute-based overlay network for non-dht structured peer-to-peer
lookup, in International Conference on Parallel Processing (ICPP 2007), 2007.

[51] T.Asano, D.Ranjan, T.Roos, E.Welzl, and P.Widmayer, Space-filling curves and their use in the design of geometric
data structures, Theoretical Computer Science, 181 (1997), pp. 3–15.

DEEPG: Dual Heap Overlay Resource Discovery Protocol for Mobile Grid 255

[52] T.Phan, L.Huang, and C.Dulan, Challenge: Integrating mobile wireless devices into the computational grid, in Proceedings
of the 8th ACM Int. Conf. on Mobile Computing and Networking, (MobiCom 02), 2002.

[53] Z. Xu, R. Min, and Y. Hu, Reducing maintenance overhead in dht based peer-to-peer algorithms, in Proceedings of the Third
International Conference on Peer-to-Peer Computing (P2P03), 2003.

Edited by: Dana Petcu and Marcin Paprzycki
Received: May 1, 2011
Accepted: May 31, 2011

Scalable Computing: Practice and Experience

Volume 12, Number 2, pp. 257–264. http://www.scpe.org
ISSN 1895-1767

c© 2011 SCPE

GREEN DESKTOP-GRIDS: SCIENTIFIC IMPACT, CARBON FOOTPRINT, POWER
USAGE EFFICIENCY

BERNHARD SCHOTT ∗AND AD EMMEN †

Abstract. Desktop Grids take their place in the e-Science distributed computing infrastructure - scaling into the millions
of PCs. Desktop-Grids collect CPU cycles from PCs contributed by donors, by volunteers who are willing to support science
and research. The Green key advantage of Desktop-Grids over service Grids and data centers based on clusters of servers is the
minimal heat density. Compute Clusters without energy intensive aircondition would run into thermal disaster within minutes. PCs
participating in Desktop-Grids usually do not make use of any aircondition. In return and with raising energy prices, data centers
have implemented lower costs air-conditioning means like e.g. free cooling, improving their thermodynamic-efficiency and PUE
rating. This paper, based on [24], investigates whether Desktop-Grids still have a Green advantage over Service-Grids and describe
several distinct Green Methodologies to optimize compute unit specific energy consumption. Green-IT metrics as Carbon Footprint
and PUE are analyzed for their relevance and applied to Desktop-Grids. Pragmatic implementation steps to Green-Desktop-Grids
are described.

1. Desktop-Grid: Scientific Impact of large scale DCIs. During the past years, volunteer Desktop
Grids have become a regular part of the computational infrastructure for e-Science. Although they already form
an impressive computational power, the EDGeS infrastructure for instance connects about 150.000 computers
in Desktop Grids to the European Grid Infrastructure (EGI), this is only the beginning, as there are hundreds of
millions of computers, alone in Europe that could be connected. Desktop Grids take their place in the e-Science
distributed computing infrastructure - scaling into the millions of PCs [23].

Compute time harvested from resource owners, typically individuals at home but also institutions and
companies, does not request large upfront investment by the scientist; it is a low cost approach towards significant
scientific output. Typically implemented using BOINC [17], sometimes XtremWeb [19], OUR-Grid [49], or other
packages, Desktop-Grids are found among the largest Distributed Compute Infrastructures (DCI) [1]. Also
known as Volunteer-Computing, Desktop-Grids have been around since the very early days of Grid computing
[18]. An outstanding illustration of Desktop-Grid scientific impact was delivered these days by Einstein@Home.
The new binary radio pulsar J1952+2630 was detected in data recorded at the Arecibo telescope back in 2005
[35].

The aggregations of so many machines result in significant performance well beyond Petaflop/s for selected
applications. For example: BOINC network averages about 5.1 Petaflop/s as of April 21, 2010 [2]. Key difference
to service Grids like EGEE (now EGI) is the voluntary character of the resources citizens contribute their PCs
compute time to the Desktop-Grid projects in order to support scientific challenges of their choice. The FP7
project DEGISCO [20] supports Desktop-Grid deployments in and beyond Europe, especially countries that
strongly collaborate with the European Union. DEGISCO recently published a first version of the Desktop Grids
for eScience Road Map [21, 22], a guide to prepare and implement successful Desktop-Grid roll-outs, second
release scheduled for June 2011. DEGISCO is accompanied by the EDGI project that continues to maintain
and further develop the 3G-Bridge [3], a gateway transparently connecting gLite, Unicore, and KnowArc based
infrastructures (Service-Grids) to Desktop-Grids by automated translation of the job-languages.

Sustained development and success of this combination of Desktop-Grids and Service-Grids has been proven
at the EGI User Forum 2011 in Vilnius, Lithuania, by command-line submission of 10,000 jobs to a Desktop
Grid from and through gLite, one of the main EGI Grid stacks [26].

Fascinating progress in material science using Desktop-Grids was reported by O. Gatsenko et al at the
CGW2010 [27, 28, 29, 30], proving even complex problems to be solvable on a distributed Desktop-Grid platform.

2. The need for Green Desktop-Grids. One core topic of DEGISCO is the energy efficient handling
of Desktop-Grid workload and management of resources, provided as configuration advice to Desktop-Grid
operators. The need for Green-Desktop-Grids derives from sheer size: Desktop-Grids can aggregate hundred-
thousands of machines per project. Power consumption of such large amounts of devices should be considered
when making use of them. Indeed, when used for computation, energy consumption of PCs (like of any other
computer) goes up [5,31]. The contributor, the volunteer, who allows and enables the use of her or his machine,

∗AlmereGrid and VCOdyne SAS, Le Chesnay, France, E-mail: bernhard.schott@vcodyne.com
†AlmereGrid, Almere, Netherlands, E-mail: ad@almeregrid.nl

257

258 B. Schott and A. Emmen

not only provides compute time for free but also pays for the additional electrical energy to cover the computation
induced power consumption during a potentially increased uptime.

Key advantage of Desktop-Grids is the minimal power density compared to conventional data centres. Typ-
ically, PCs participating in Desktop-Grids in Europe are not hosted in air-conditioned environments. Without
the energy burden of air-conditions, Desktop-Grid are intrinsically greener than data centre based clusters and
thereof built Service-Grids. Data centers have been improving their power efficiency in the recent years, so we
want to investigate how Green they are compared to Green-Desktop-Grids.

3. PUE a Green IT metric. PUE Power Usage Efficiency has been broadly accepted as metric
to determine how green data centers are [32]. PUE is defined as “Total Facility Energy divided by the IT
Equipment Energy”. The best possible value is 1,0 = all energy provided is used in the IT equipment. PUE
values are to be measured over a full year timespan to have winter temperatures with lower cooling efforts
balance summer heat. PUE typically ranges between 1.5–2.5.

The Code of Conduct on Datacenters [4] quotes that most (older) European data centres are actually worse:
they consume more than 200% of the IT related energy (PUE 3) for cooling, UPS and power distribution losses.

Recently the Facebook Open Compute Project [33] published PUE 1.07 which was criticized to be a
snapshot value, calculated over a limited period during perfect conditions [34]. In order to try a comparison
between Desktop-Grid and Service-Grid Green level, we transfer the PUE concept[32] from data center boundary
to a system boundary including Desktop-Grid servers and Desktop-Grid-Clients. To clarify this fact, we call it
the System-PUE. In our example we take 150000 PCs with partial-PUE (PPUE) of 1.0 + 15 BOINC servers
with a PPUE of 1.8 deliver a System-PUE of 1.00020 (Fig. 3.1).

Fig. 3.1: Calculating a Desktop-Grid “System”-PUE

Transferring the PUE metric from data center to Desktop-Grid seems adequate for the similarities in ther-
modynamic definitions of systems. PUE for data centers is defined with regards to the data center boundaries.
Still this is not a thermodynamic ensemble, not a closed system. The key advances in data center efficiency
are based on introducing free-cooling [36] and direct-air-cooling, both implying open system thermodynamics
as cold water or air is opportunistically fed into the data center - which is quite similar to the fundamental
air-condition method of Desktop-Grid-Clients: “open the window”. Intel has exercised the open window ap-
proach successfully in a production data center even to the point where servers became dust covered, exposed
to varying humidity. The whitepaper [37] reports results like saving 2,8 million USD in power consumption
annually with only minimal increase in server failure rate. Another example [38] keeps the air quality to ETSI
standards but cools directly with air also.

3.1. Limited applicability of PUE. The resulting amazing PUE values derived from open window and
similar approaches are questionable. IT equipment is stressed to the full extend of safe operations temperature
range. Pointed out in the chapter Difficulties of temperature measurements below, built in fans are temperature
controlled now running at maximum speed, causing raised energy consumption. By definitions of PUE, this
additional cooling consumption does not worsen but improves the PUE value a clear mistake.

3.2. More Green Desktop-Grids needed. The need for compute power, the progress of Computer
Aided Science (CAS), is massive and unstoppable. Researchers from all sectors are urgently looking for more

Green Desktop-Grids: Scientific Impact, Carbon Footprint, Power Usage Efficiency 259

compute power. By June 2010 and well ahead of operations start, PRACE resources were already oversubscribed
by a factor of 5 [6]. Although Desktop-Grid suitable workload is not HPC and only the lean-data-fraction of
all HTC, significant scientific output has been, is, and will be produced with their help [7]. With the growing
importance of Desktop-Grids in the scientific process and the significantly growing deployments, the need to
optimize the use of energy is obvious both for general environmental considerations as well as for the attraction
of contributors. Citizens providing their machines are interested in finding their contribution used in the most
optimal way, producing more science and less waste-energy.

4. Questioning the Aims of Green IT: CO2 Footprint and the Energy mix. The original aim and
claim of Green IT was formulated as “Reduction of IT activities CO2 footprint”. As extended scope reduction of
energy consumption in general and especially thermal emissions in metropolitan areas, both impacting a) global
climate b) local (micro) climate and c) human quality of life. Production of CO2 and accordingly the reduction
of CO2 footprint are difficult to measure from the perspective of a concrete IT activity like computation.

Even if energy consumption as such is accounted for, it depends on the local energy mix how much CO2
this is equivalent to.

Fig. 4.1: EC Data sheet: Zero CO2 electricity sources by 2007

The electrical energy mix, the combination of electrical energy sources, depends on national specifics. The
electrical energy mix (Fig. 4.1) in Germany [9] includes a nuclear energy portion of 27.5%, scheduled to be
phased out, while the French [10] one (78.3%) is stable on a higher level. Denmark [11] produces 25% of its
electricity consumption from wind sometimes up to 150% (when strong winds produce more electricity that
the Denmark needs) causing negative energy prices at the spot market [12].

In Desktop-Grids, main energy consumption takes place at the client, compare Fig. 3.1. Accordingly the
individual PC owner is in control which energy source, which energy tariff is primarily used. The Desktop-Grid
server operator respectively the BOINC project manager can target to recruit donors from specific regions with
their specific regional energy mix.

Typical for concurrent Green-IT discussion, it avoids mentioning nuclear power. For example the whitepaper
on data center metric “Carbon Usage Effectiveness” (CUE, TheGreenGrid) [42]) states: “...the electricity may
have been generated from varying CO2-intensive plants. Coal or gas generate more CO2 than hydro or wind.
” but skips nuclear.

As pointed out in the following chapter on Green Desktop-Grid Methodologies it is possible to direct
workload towards a region by recruiting volunteers from those specific geographies. In order to reduce Carbon
Footprint, the Desktop-Grid-Project could recruit donors from France for example, automatically assuring 90%
CO2 free computing (=80% nuclear + 10% renewables.), a CO2 value much lower than for example for Denmark
not owning any nuclear power plant.

With a more general approach towards environmental protection - latest under the impression of Fukushima
- it is difficult to prefer nuclear power plants with their intrinsic security threads and unresolved radioactive
waste issues over natural gas powered electricity generation, although emitting carbon dioxide. Nevertheless
it is beyond the scope of this paper to discuss alternative energy production strategies as we are focusing on
alternative energy uses.

Desktop-Grid operators and donors together can implement environmental friendly policies:

260 B. Schott and A. Emmen

• Energy tariff choice. Green energy tariffs excluding nuclear power are generally available for private
households, companies, and institutions and meanwhile price-wise acceptable as examples from UK and
Germany indicate [39, 40, 41];
• Reduce energy consumption in general.

As CO2 footprint alone fails to reflect energy production reality, it seems adequate rephrasing the core aim
of Green IT from “Reduce CO2 footprint” to “Save energy”.

4.1. e- metrics for Green IT success. In order to measure the effectiveness of energy saving policies
and methods, we need to introduce a metric that can be “metered”. The obvious advantage of “kWh” as the
base metric for Green IT is the simplicity of measurement: electricity is metered everywhere. Different from
data centres and conventional Service-Grids, policies and methods are applied and executed in Desktop-Grids
mainly by the volunteer effort of the resource contributor. As success metric for Green IT, the translation into
cost, into money, is helpful to connect to business considerations and propel motivation. With e(for kWh) as
metric, contributors can relate their choice of workload and policy-compliance to the personal electricity bill.
Green Desktop-Grids help the planet and your budget may express this motivation appropriately.

5. DEGISCO Green Desktop-Grid Methodologies. DEGISCO investigates conceptually different
methodologies, based on technology means like Desktop-Grid-Client based ambient metrics, exploitation of
natural ambient conditions, and more. Some of those methodologies are technological, some are purely or-
ganizational. DEGISCO promotes innovative Desktop-Grid deployments through the International Desktop-
Grid-Federation [8] especially by the Desktop Grids for eScience Road Map. The Desktop-Grid-Federation
will offer consulting and advice based on Green methodologies, continuing the roadmap process to reflect and
integrate future findings and developments. One focus topic in the roadmap process is the application of Green
Methodologies to achieve reduction in energy consumption of research infrastructures.

5.1. Seven Green Desktop-Grid Methodologies. DEGISCO has started with a shortlist of 7 method-
ologies which are a collection of best practices, techniques and policies:

• Ambient metrics based Green optimization;
• Cool strategy: avoid air-condition use;
• Energy profiling of applications;
• CPU speed steps;
• Exploitation of natural ambient conditions;
• Time-of-day dependent energy tariffs;
• Management of unused resources in a local Desktop-Grid.

In the course of the roadmap process [21, 22] these methodologies are challenged, refined or replaced,
according to feedback and feasibility tests supported by contributors.

5.1.1. Ambient metrics based Green optimization. In order to tune DEGISCO connected Desktop-
Grids towards saving of energy suitable configurations and parameters are to be identified enabling the Desktop-
Grid client to intelligently select adequate workload. A regular PC [13] almost doubles its power consumption
from idle 160W to 300W under full CPU load. BOINC general preferences [45] allow to specify that computation
consumes a certain portion of the machine, e.g. 50% of CPU time, by this reduces heat dissipation.

Ambient temperature measurement or at least estimation could be used to control and potentially prevent
download of workload items if the PC and its environment are too hot for comfortable or safe operations. The
measurement and observance of ambient conditions, mainly temperature, is essential for several advanced Green
Methodologies, too.

5.1.2. Cool strategy: avoid air-condition use. Desktop-Grids are the real Green Grids: lower energy
density than clusters results in less energy wasted for cooling. However, this may not longer be true if air-
conditions are used to assure proper operation of Desktops. According to the principles of thermodynamics,
the energy consumption by air-conditions for cooling range from 30% to >200% (PUE: 1.3..>3) of the energy
dissipated by the IT device. The wide range is a direct result of the cool-reservoir temperature the heat pump
can utilize to get rid of the heat. The prime advice to configure Green-Desktop-Grids: avoid air-condition use.

Selection criteria for the “maximum temperature” as described above could be that temperature which
would just not yet trigger the start of the local air-condition. In case the use of air-condition is unavoidable,
the recommendation to participate in Desktop-Grids depends:

Green Desktop-Grids: Scientific Impact, Carbon Footprint, Power Usage Efficiency 261

• if the additional workload by Desktop-Grids would cause proportional air-condition power consumption,
a change of strategy should be considered. Maybe by restricting the acceptance of workload to night
times would help, configurable in the BOINC client settings [44] and preferences [45];
• if the air-condition is in full power use anyway – like in tropical ambient – the additional heat dissipation

during compute load processing may not impact the total energy balance too much. Still the additional
heat dissipation can be controlled as described above [45].

Example: light building structures with poor thermal insulation and continuously running air-conditions
are de-facto standard in sub-tropical and tropical regions globally. If we assume a 3.5kW air-condition (2-
3 room flat, small house) to run non-stop in order to keep the ambient temperature 15◦C below the 40◦C
outside, additional heat dissipation of a standard office PC (60W idle, 120Watts fully loaded) would raise the
ambient temperature by ≈1◦C (assumed 50% efficiency of the air-con). The 120 Watts compare to the 100W
approximate basal metabolic rate [47] + 20-40W brain activity of the human body so the user of the PC
will raise the ambient temperature for another 1◦C while awake and thinking. The raise in room- or ambient-
temperature is minimal since the thermal balance in this example is dominated by the heat flow through the
building structure. Massively higher impact on the room-temperature is caused by cooking activities (in the
multi-kW range).

5.1.3. Energy profiling of applications. Different applications and codes consume more or less CPU
at any given time, resulting in different energy consumption per time interval, specific energy profiles. They
behave differently in raising machine and ambient temperature. According to our findings within the DEGISCO
available pool of applications (see Desktop Grid Application Super-Repository: [14]), these are could be classified
accordingly with a heat index as +, ++ and +++ for example. We refrain from using “green”, “orange”, and
“red” at this point: The +++ index marks an application that makes maximum use of a given machine,
is raising its temperature, but finishes the computation quickly. This behaviour may total in less energy
consumed/computation than the application which creates less heat/time but runs longer. Still heat/time is
an important parameter from a green operations point of view. As PC owners can select the project and by
this the application they want to contribute to, they can take into account their specific knowledge of local
operations conditions, primarily how much additional heat they can accept. If energy profiling of applications
does not supply sufficient control range, the BOINC native method of setting general preferences [45] to specify
CPU% utilization may be used.

5.1.4. CPU Speed Steps. A similar effect could be achieved by exploiting processor speed steps, avoiding
additional preparation work on the application side. Current processors provide multiple steps (8-16) for CPU
speed, thus controlling energy consumption. Gruber and Keller discuss the use of “SpeedStep” among other
methods in order to use the minimal CPU frequency to run an application at full memory bandwidth [15].
Different from the application, the OS and tools installed at the PC are under control of the Desktop-Grid
contributor, placing the management of methods like “SpeedStep” into the volunteers hand.

5.1.5. Exploitation of natural ambient conditions. DEGISCO investigates another completely in-
dependent green strategy: exploitation of natural ambient conditions. A specific project advantage facilitates
the aggregation of partners from various different geographies, a fact that allows benefiting from differences
in regional weather situations in order to save energy. Workload indexed as “+++” may systematically be
offered to contributors located in low temperature areas while those in sunny summer weather will be offered
to contribute for “+” workload. Different locations yield different climates:

• Kazakhstan, Amaty: http://worldweather.wmo.int/070/c00152.htm
• Russia, Moscow: http://worldweather.wmo.int/107/c00206.htm
• Hungary, Budapest: http://worldweather.wmo.int/017/c00060.htm
• Denmark, Copenhagen: http://worldweather.wmo.int/173/c00190.htm
• Spain, Zaragoza: http://worldweather.wmo.int/083/c01240.htm

Recruiting regions with opposite weather conditions allows to counteract actual weather conditions. E.g. if
there is only “+++”-workload-type available today, Copenhagen may be preferred over Zaragossa. DEGISCO
partners from Kazakhstan, Russia, and Spain confirmed the weather conditions reported on “worldweather” as
already averaged – the peak temperatures exceed both into heights and lows significantly.

5.1.6. Time-of-day or weather dependent energy tariffs. The value and price of electrical energy is
changing according to the conditions of generation as well as by changing consumption. Accordingly, the tariffs

262 B. Schott and A. Emmen

for electricity are changing over time of day and year. While in Germany electricity prices are high during lunch
time, in Kazakhstan the energy prices go up in the evening – in both cases dependent on consumption.

Energy prices at the Spot markets vary depending on excess production capacity. Since wind energy can
deliver significant amounts of energy, these spot market prices can even turn negative [12].

To improve the energy cost situation and to take advantage of excess Green electricity, advice could be
given to contributors how to configure their Desktop-Grid-Clients to prefer workload during low tariff times [45,
46].

5.1.7. Management of unused resources in a local Desktop-Grid. A seventh Green strategy can
be reported from the OUR-Grid project, presented e.g. at OGF30, Brussels: Lesandro Ponciano and Francisco
Brasileiro have focussed on sleeping- and wake-up-strategies for Desktop-Grid-Clients from various modes like
off, suspend, or hibernate, and the according impact on responsiveness of a campus Desktop-Grid [49]. Wake-
up-strategies like WOL (Wake on LAN) are usually not applicable for Internet scale deployments but work well
in local networks.

6. Desktop-Grid the loosely coupled virtual data centre. A major difference between a data centre
situation and volunteer based Desktop-Grids is the almost complete lack of central control over the compute
resources. Further, Desktop-Grid applications are executed as user with limited permissions (no root rights).
Accordingly, installation of support tools, in our case for temperature and energy consumption measurement, is
not possible without active voluntary contribution by the resource owner, installing tools with administrator (aka
“root”) rights. This cannot be done as regular Grid job: different from service Grids, Desktop-Grids implement
highest security standards also on the execution side. Applications that are downloaded and executed on the
contributed Desktop-Grid client are security validated and, dependent on the Desktop-Grid technology used,
even rewritten to execute exactly that computation as described and nothing more. Any activity beyond the
sandbox, e.g. accessing local HW devices like sensors, is off limits for Desktop-Grid jobs. When DEGISCO is
looking to gather detailed temperature and energy consumption data we are asking for volunteers to download
and install tools and allow the upload of resulting metric data.

6.1. Difficulties of temperature measurements. In order to apply the Green Methodologies described,
it is very helpful to adequately understand the ambient conditions of the PC, especially the ambient temperature.
It seems obvious to utilize the PC’s built in temperature sensors – but there are difficulties to overcome.
The temperature sensors included in PCs and laptops are optimized to support energy management of the
PC and its components – not to provide ambient conditions, the kind of information we need. Mainly the
position of the sensor determines what is measured. On-die temperature sensors may reflect the CPU internal
temperature quite precisely while “system” temperature sensors are placed “somewhere” on the mainboard
– delivering temperature measurements that cannot be interpreted meaningful without precise and detailed
knowledge of the individual board. Although this seems doable in a lab situation, it is completely beyond
scope for real world deployed Desktop-Grids. The situation is not very much better in regular data centres:
depending on the placement of the temperature sensor in the rack, a hot spot will be detected or not. A detailed
temperature measurement at several positions in the rack is still not commonly found. For safety reasons, the
single temperature sensor is placed to detect the (known or anticipated) hot spot, caused by poor local airflow –
delivering information misleading with regards to average, typical, or total (i.e. = full rack) energy consumption.
Further complication is deriving from the application of temperature aware fan speed controls embedded in the
systems. Originally developed for Desktops in order to keep their operations noise level convenient for living
room conditions, meanwhile regular servers are controlling their fan speeds to provide exactly that amount of
cooling needed to keep board temperature within the targeted operations range while enhancing the lifetime
of the fans. The “Code of Conduct on Datacenters” [4] explicitly requests control of fan speeds also on the
data centre level. The result for our aim to understand the ambient conditions of a machine by reading its
temperature sensors gets complicated by these features.

Still the information retrieved may well be sufficient for our aims:

1. Understand values delivered by PC internal temperature sensors as non-linear non-calibrated relative
information on machine cooling effectiveness;

2. For ambient temperature use meteorological data by independent sources;
3. To calibrate and QA the methods, call for participation by contributors in a temperature measurement

campaign.

Green Desktop-Grids: Scientific Impact, Carbon Footprint, Power Usage Efficiency 263

Even qualitative temperature information is suitable to distinguish condition “too hot for workload” from
“cool and ready to work”. To verify our understanding on ambient conditions, we started working Fraunhofer
Institute ITWM, Kaiserslautern to reuse a simple and low cost temperature sensor [16] that can be connected
to the desktop or laptop (USB) and delivers proper ambient metrics. This temperature sensor may be offered to
Desktop-Grid volunteers by mail-order, requesting the commitment to provide temperature measurement data
for automated upload.

Desktop-Grids have been used for sensor applications frequently, like the project “Quake”: Quake-Catcher
Network Seismic Monitoring [48]. The Quake project tried to use the built-in sensors primarily, but offers
external sensors too.

7. Conclusion and outlook on International-Desktop-Grid-Federation. We need to progress on
wise usage of donated compute time and the accompanied energy, otherwise future willingness of donors is
questionable. Desktop-Grids are positioned well as the comparison with data centers show – but improvements
are possible and looked for like improved energy aware scheduling interconnected with user friendly project
specific energy aware client preferences. This will need to be implemented on the Desktop-Grid technology
(client, server) in an easy to manage, easy to operate way, something that could be targeted by an upcoming
research project. For immediate use and implementation, DEGISCO provides the roadmap document to assure
Green-Desktop-Grid success.

In order to improve Desktop-Grid services for e-science and to sustain Desktop-Grids as regular DCI
(Distributed Compute Infrastructure) the International-Desktop-Grid-Federation (IDGF, [14]) takes over from
DEGISCO and EDGI. The IDGF is becoming the crystallization point for new projects and advances in Desktop-
Grids and especially Green-Desktop-Grids.

Acknowledgements DEGISCO is supported by the FP7 Capacities Programme under grant agreement
nr RI-261561.

REFERENCES

[1] Folding@Home, Client statistics by OS, [Online] http://www.boincstats.com/stats/project graph.php?pr=bo
[2] BOINC, Credit overview, [Online] [Cited: 21 04 2010.] http://www.boincstats.com/stats/project graph.php?pr=bo
[3] Farkas, P. Kacsuk, Z. Balaton, G. Gombas, Interoperability of BOINC and EGEE, Future Generation Computer Sys-

tems,Volume 26, Issue 8, Pages 1092-1103, October 2010, http://dx.doi.org/10.1016/j.future.2010.05.009
[4] Institute for Energy,, European Commission Joint Research Centre. EU Code of Conduct for

Data Centres, http://re.jrc.ec.europa.eu/energyefficiency/html/standby initiative data centers.htm.
http://re.jrc.ec.europa.eu/energyefficiency/pdf/CoC%20DC%20new%20rep%20form%20and%20guidelines/Best
%20Practices%20v2.0.0%20-%20Release.pdf

[5] Schott, Bernhard, Energy optimization of existing datacenters, OGF25 Catania, [Online]
http://www.ogf.org/OGF25/materials/1654/Energy+Optimization+of+Existing+Datacenters+-+Bernhard+Schott+-
+Platform.pdf

[6] Lippert, Thomas, Contributions to HPC 2010 Cetraro, High Performance Computing, GRIDS and clouds, June 21–25, 2010,
Cetraro, Italy. [Online] 21-25 06 2010. http://www.hpcc.unical.it/hpc2010/ctrbs/lippert.pdf.

[7] Robert Lovas, Tamas Kiss, Integrated service and desktop grids for scientific computing, In: Conference proceed-
ings of DCABES 2009. The 8th international symposium on distributed computing and applications to busi-
ness, engineering and science. Wuhan, China, 16–19, October, 2009. DCABES, pp. 251-255. ISBN 9787121095955
http://dcabes.meeting.whut.edu.cn/DCABES2009/Files/DCABES%202009%20Proceedings.pdf

[8] Federation, International Desktop Grid. International Desktop Grid Federation, [Online] http://desktopgridfederation.org/
[9] Comission, European, GERMANY Energy Mix Fact Sheet. [Online] http://ec.europa.eu/energy/energy policy/doc/

factsheets/mix/mix de en.pdf
[10] Comission, European, FRANCE Energy Mix Fact Sheet. [Online] http://ec.europa.eu/energy/energy policy/doc/

factsheets/mix/mix fr en.pdf
[11] Comission, European, DENMARK Energy Mix Fact Sheet. [Online] http://ec.europa.eu/energy/energy policy/doc/

factsheets/mix/mix dk en.pdf
[12] Spot, Nord Pool, Nord Pool Spot implements negative price floor in Elspot from October 2009. [On-

line] http://www.nordpoolspot.com/Market Information/Exchange-information/No162009-Nord-Pool-Spot-implements-
negative-price-floor-in-Elspot-from-October-2009-/

[13] PCWelt, CPU-Leistungsexplosion Intel Core i7 Prozessor. Stromverbrauch und Energieeffizienz, [Online]
http://www.pcwelt.de/start/computer/prozessor/tests/185273/intel core i7 prozessor/index3.html

[14] IDGF, Applications available on the EDGI/DEGISCO infrastructures, International Desktop Grid Federation [Online]
http://desktopgridfederation.org/applications

[15] Gruber, Ralf and Keller, Vincent, HPC Green IT, Berlin Heidelberg: Springer-Verlag, 2010. p. 184ff. DOI 10.1007/978-
3-642-01789-6 1

[16] Dalheimer, Mathias, FHG ITWM. USBTemp: Continuous Temperature Monitoring, [Online]
http://gonium.net/md/2009/01/03/usbtemp-continuous-temperature-monitoring/

264 B. Schott and A. Emmen

[17] BOINC, Open-Source Software fr Volunteer Computing und Grid Computing, [Online] http://boinc.berkeley.edu/
[18] GIMPS, Great Internet Mersenne Prime Search, [Online] http://mersenne.org/various/history.php
[19] XtremWeb, XtremWeb: the Open Source Platform for Desktop Grids, [Online] http://www.xtremweb.net/
[20] DEGISCO, DEGISCO project website, [Online] http://degisco.eu/introduction
[21] DEGISCO press release, DEGISCO to release first version of Desktop Grids for eScience Road Map, [Online]

http://degisco.eu/press-release-20110204
[22] DEGISCO, Desktop Grids for eScience Road Map, [Online] http://desktopgridfederation.org/documents/10508/57919/

RoadMapD.pdf?version=1.0
[23] Emmen, Ad, Desktop Grids take their place in the e-Science distributed computing infrastructure, Cracow Grid Workshop

2010 [Online] http://www.cyfronet.pl/cgw10/keynote-abs.html#n1
[24] Schott, Bernhard and Emmen, Ad, Degisco Green Methodologies in Desktop Grids, International Multiconference on

Computer Science and Information Technology, [Online] http://proceedings2010.imcsit.org/pliks/191.pdf
[25] Schott, B. and Emmen, A., Green Methodologies in Desktop-Grid, [Online]

http://ieeexplore.ieee.org/xpl/freeabs all.jsp?arnumber=5679621
[26] Versweyveld, Leslie, EDGI submits 10,000 jobs to Desktop Grid at EGI User Forum, [Online] http://degisco.eu/start/-

/blogs/edgi-submits-10-000-jobs-to-desktop-grid-at-egi-user-forum
[27] Gatsenko, Oleksandr et al., Statistical Properties of Deformed Single-Crystal Surface under Real-Time Video Monitoring

and Processing in the Desktop Grid Distributed Computing Environment, Key Engineering Materials, 2011 [Online]
http://www.scientific.net/KEM.465.306

[28] O. Gatsenko, O. Baskova, and Yu.G. Gordienko, Desktop Grid Computing in Materials Science Lab - Example of
Development and Execution of Application for Defect Aggregation Simulations, Proc. of Cracow Grid Workshop, Cracow,
Poland, 2010, pages 264-272

[29] O. Gatsenko, O. Baskova, and Yu.G. Gordienko, Scaling-up MATLAB Application in Desktop Grid for High-Performance
Distributed Computing Example of Image and Video Processing, Proc. of Cracow Grid Workshop, Cracow, Poland, 2010,
pages 255-263

[30] O. Gatsenko, O. Baskova, and Yu.G. Gordienko, Enabling High-Performance Distributed Computing to e-Science by
Integration of 4th Generation Language Environments with Desktop Grid Architecture and Convergence with Global
Computing Grid, Proc. of Cracow Grid Workshop, Cracow, Poland, 2010

[31] BOINC, Heat and energy considerations, [Online] http://boinc.berkeley.edu/wiki/Heat and energy considerations
[32] Azevedo Dan, Cooley Jud, Patterson Michael and Blackburn Mark, Data Center Efficiency Met-

rics, The Green Grid Technical Forum 2011 [Online] http://www.thegreengrid.org/ /media/TechForumPresenta-
tions2011/Data Center Efficiency Metrics 2011.ashx?lang=en

[33] Higginbotham, Stacey, Facebook Open Sources Its Servers and Data Centers, GIGAOM [Online]
http://gigaom.com/cloud/facebook-open-sources-its-servers-and-data-centers/

[34] Fehrenbacher, Katie, How a Snapshot of a Green Data Center Can Be Misleading, GIGAOM [Online]
http://gigaom.com/cleantech/how-a-snapshot-of-a-green-data-center-can-be-misleading/

[35] Eistein@home, Arecibo PALFA Survey and Einstein@Home: Binary Pulsar Discovery by Volunteer Computing, [Online]
http://einsteinathome.org/

[36] Wikipedia, overview article on ”Free cooling”, [Online] http://en.wikipedia.org/wiki/Free cooling
[37] Don Atwood, John G. Miner, Reducing Data Center Cost with an Air Economizer, [Online]

http://www.intel.com/it/pdf/reducing data center cost with an air economizer.pdf
[38] Erik Vandenmeersch and Johan Vanderhaegen, Free Air Cooling Proof of Concept, [Online]

http://wikis.sun.com/display/freeaircooling/Free+Air+Cooling+Proof+of+Concept
[39] Greenpeace Energy, [Online] http://www.greenpeace-energy.de/index.html
[40] Naturenergieplus, [Online] http://www.naturenergieplus.de/index.php
[41] Green Electricity Marketplace, [Online] http://www.greenelectricity.org/index.php
[42] Belady Christian et al., WP#32-Carbon Usage Effectiveness (CUE): A Green Grid Data Center Sustainability

Metric, TheGreenGrid [Online] http://www.thegreengrid.org/ /media/WhitePapers/CarbonUsageEffectivenessWhitePa-
per20101202.ashx?lang=en

[43] BOINC Project-Options, [Online] http://boinc.berkeley.edu/trac/wiki/ProjectOptions
[44] BOINC Client configuration, [Online] http://boinc.berkeley.edu/wiki/Client configuration
[45] BOINC General preferences, [Online] http://boinc.berkeley.edu/wiki/Preferences
[46] BOINC Heat and energy considerations, [Online] http://boinc.berkeley.edu/wiki/Heat and energy considerations
[47] Wikipedia, Basal animal metabolic rate [Online] http://en.wikipedia.org/wiki/Basal metabolic rate
[48] Quake, Quake-Catcher Network Seismic Monitoring [Online] http://qcn.stanford.edu/sensor/
[49] Ponciano Lesandro and Brasileiro Francisco, New developments in DGs: Prof. Brasiliero: Our-Grid Power

management On the Impact of Energy-saving Strategies in Opportunistic Grids [Online] http://www.ens-
lyon.fr/LIP/RESO/e2gc2 2010/slides/e2gc2 lponciano.pdf

Edited by: Dana Petcu and Marcin Paprzycki
Received: May 1, 2011
Accepted: May 31, 2011

Scalable Computing: Practice and Experience

Volume 12, Number 2, pp. 265–274. http://www.scpe.org
ISSN 1895-1767

c© 2011 SCPE

HYBRID PARALLEL PROGRAMMING FOR BLUE GENE/P

MADS R. B. KRISTENSEN, HANS H. HAPPE, AND BRIAN VINTER∗

Abstract. The concept of massively parallel processors has been taken to the extreme with the introduction of the BlueGene
architectures from IBM. With hundreds of thousands of processors in one machine the parallelism is extreme, but so are the
techniques that must be applied to obtain performance with that many processors. In this work we present optimizations of a
Grid-based projector-augmented wave method software, GPAW, for the Blue Gene/P architecture. The improvements are achieved
by exploring the advantage of shared and distributed memory programming also known as hybrid programming and blocked
communication to improve latency hiding. The work focuses on optimizing a very time consuming operation in GPAW, the stencil
operation, and different hybrid programming approaches are evaluated. The work succeeds in demonstrating a hybrid programming
model, which is clearly beneficial compared to the original flat programming model. In total an improvement of 1.94 compared
to the original implementation is obtained. The results we demonstrate here are reasonably general and may be applied to other
stencil codes.

Key words: GPAW, HPC, Hybrid-programming, Multicore platforms

1. Introduction. Grid Based Projector Augmented Wave (GPAW) [8] is a simulation software, which
simulates many-body systems at the sub-atomic level. GPAW is primarily used by physicists and chemists
to investigate the electronic structure, principally the ground state, of many-body systems. The GPAW users
often have a desire to increase the system size and resolution to the point where the simulation time escalates
to weeks and sometimes even months. A massively parallel implementation of GPAW, which is able to fully
utilize a supercomputer, is therefore highly desirable.

The performance profile of GPAW dependence almost entirely on the electronic structures that are being
simulated. Therefore, it is difficult to measure the general performance of GPAW. However, a significant part
of any GPAW computation consists of a distributed stencil operation. Thus an optimization of this stencil
operation will result in an improvement of the general performance of GPAW. The main object of this paper is
to optimize the stencil operation for the Blue Gene/P [9] (BGP) architecture.

The current trend in HPC hardware is towards systems of shared-memory computation nodes. The BGP
also follows this trend and consists of four CPU-cores per node. Furthermore, it is quite possible that future
versions of the Blue Gene architecture will consists of even more CPU-cores per node.

To exploit the memory locality in shared-memory computation nodes a paradigm that combines shared and
distributed memory programming may be of interest. The idea is to avoid communication between CPU-cores
on the same node. Unfortunately, it is not trivial to obtain good performance when combining shared-memory
programming with distributed memory programming. Even though inter-CPU communication is avoided, it is
often the case that the sole use of MPI [5] outperforms a combination of threads and MPI when computing on
clusters of shared-memory computation nodes [6, 7, 10].

We evaluate two different hybrid programming approaches. One approach in which inter-node communica-
tion is handled individually by every thread and another approach in which one thread handles the inter-node
communication on behalf of all the other threads in a node. The work shows that, on the Blue Gene/P, the
first approach is clearly superior the latter. In [3] the authors concludes that, on a well balanced system, a
loop level parallelization approach, corresponding to our second hybrid approach, is unfavorably compared to a
strict MPI implementation. Our first hybrid approach was developed on the basis of that conclusion.

2. GPAW. GPAW is a real-space grid implementation of the projector augmented wave method [2]. It uses
uniform real-space grids and the finite-difference approximation for the density functional theory calculations.

A central part of density functional theory and a very time consuming task in GPAW, is to solve Poisson
and Kohn-Sham equations. Both equations rely on stencil operations when solved by GPAW. When solving the
Poisson equation, a stencil is applied to the electrostatic potential of the system. When solving the Kohn-Sham
equation, a stencil is applied to all wave-functions in the system. Both the electron density and the wave-
functions are represented by real-space grids. A system typically consists of one electron density and thousands
of wave-functions. The number of wave-functions in a system depends on the number of valence electrons in
the system. For every valence electron there may be up to two wave-functions.

∗Niels Bohr Institute, Copenhagen, Denmark. {madsbk, happe, vinter}@nbi.dk

265

266 M. R. B. Kristensen, H. H. Happe and B. Vinter

Fig. 2.1: A stencil operation on a 2D grid.

Table 3.1: Hardware description of a Blue Gene/P node

Node CPU Four PowerPC 450 cores
CPU frequency 850 MHz
L1 cache (private) 64KB per core
L2 cache (private) Seven stream prefetching
L3 cache (shared) 8MB
Main memory 2GB
Main memory bandwidth 13.6GB/s
Peak performance 13.6 Gflops/node
Torus bandwidth 6 × 2 × 425MB/s = 5.1GB/s

The computational magnitude of a GPAW simulation depends mainly on three factors: The world size,
simulation system resolution and the number of valence electrons. The world size and resolution determine the
dimensions of the real-space grids and the number of valence electrons determines the number of real-space
grids.

A user is typically more interested in adding valence electrons to the simulation than to increase the size
or resolution of the world. The real-space grid size will ordinary be in the interval 1003 to 2003 where as the
total number of real-space grids will be greater than thousand.

2.1. Stencil Operation. A stencil operation updates a point in a grid based on the surrounding points.
A typical 2D example is illustrated in Fig. 2.1 where points are updated based on the two nearest points in all
four directions.

Stencil operations on the real-space grids (3D arrays) are used for the finite-difference approximation in
GPAW. The stencil operation used is a linear combination of a point’s two nearest neighbors in all six directions
and itself. The stencil operations do normally use periodic boundary condition but that is not always the case.

If we look at the real-space grid A and a predefined list of constants C, a point Ax,y,z is computed like this:

A′
x,y,z = C1Ax,y,z + C2Ax−1,y,z + C3Ax+1,y,z+

C4Ax−2,y,z + C5Ax+2,y,z + C6Ax,y−1,z+
C7Ax,y+1,z + C8Ax,y−2,z + C9Ax,y+2,z+
C10Ax,y,z−1 + C11Ax,y,z+1+
C12Ax,y,z−2 + C13Ax,y,z+2

3. Blue Gene/P. Blue Gene/P consists of a number of nodes interconnected with three independent
networks: a 3D torus network, a collective tree structured network, and a global barrier network. All point-to-
point communication goes through the torus network and every node is equipped with a direct memory access
(DMA) engine to offload torus communication from the CPUs. The collective tree structured network is used
for collective operation like the MPI reduce operation and the global barrier network is used for barriers.

Table 3.1 is a brief description of a BGP node. One thing to highlight is the ratio between the speed of the
CPU-cores and the main memory. Since the CPU-cores are relatively slow and the main memory is relatively
fast compared to today’s standard, the performance of the main memory is not as far behind the CPU as
usually. Furthermore, the torus bandwidth is only three times lower than the main memory bus when all six
connections are used. The von Neumann bottleneck [1] associated with main memory and network is therefore
reduced.

The CPU-cores can be utilized by normal SMP approaches like pthread or OpenMP, with the limitation
that BGP only supports one thread per CPU-core. The BGP addresses the problem of utilizing multiple CPU-
cores by supporting a virtual partition of the nodes. From the programmers point of view the four CPU-cores

Hybrid Parallel Programming for Blue Gene/P 267

 0

 50

 100

 150

 200

 250

 300

 350

 400

10^0 10^1 10^2 10^3 10^4 10^5 10^6 10^7

B
an

dw
id

th
 in

 M
B

/s
ec

Message size in bytes

Fig. 3.1: A bandwidth graph showing how the message size influence the bandwidth. In this experiment, one
MPI message is send between two neighboring BGP nodes.

The same MPI process

Grids

Fig. 4.1: Four 2D grids distributed over nine processes.

would then look like four individual nodes with each 512MB of main memory. This virtual partitioning is called
virtual mode.

3.1. MPI. BGP implements the MPICH2 library, which comply with the MPI-2 specification [4]. MPI-2
specifies different levels of threaded communication. BGP supports the fully thread-safe mode called MULTIPLE

that allows any thread to call the MPI library at any time. Since there is an overhead associated with MULTIPLE

(e.g. locks), it is also possible to use the more restricted SINGLE mode that do not allow concurrent calls to
MPI.

The MPICH2 implementation is tailored to utilize the BGP’s DMA engine which means that non-blocking
MPI communication is handled asynchronously with minimum CPU involvement.

BGP supports the MPI Cart create function, which tells BGP to reorder the MPI ranks in order to match
the torus network. We make use of this function in all the following.

To investigate how much the message size influence point-to-point bandwidth, we have performed an ex-
periment in which one MPI message is send between two neighboring BGP nodes (cf. Fig. 3.1). The result of
the experiment clearly shows that in order to maximize the bandwidth, a message size greater than 105 bytes
is needed, while half the asymptotic bandwidth is achieved at approximate 103 bytes.

4. The GPAW Implementation. GPAW is implemented using C and Python. The intention is that
the users of GPAW should write the model description in Python and then call C and Fortran functions from
within Python. It is in this context a user would apply the C implemented stencil operation on one or more
real-space grids.

The parallel version of GPAW uses MPI in a flat programming model and the parallelization is done by
simple domain decomposition of every real-space grid in the simulation. That is, every MPI process gets the
same subset of every real-space grid in the simulation. This is important because some part of the GPAW

268 M. R. B. Kristensen, H. H. Happe and B. Vinter

Fig. 4.2: 2D grid distributed over nine processes. A process needs some of its neighbor’s surface points, to
compute its own surface points.

computation, like the orthogonalization of wave-functions, requires the same subset of every real-space grid in
the simulation. This domain decomposition is illustrated in Fig. 4.1 with 2D real-space grids instead of 3D
grids.

The grids are simply divided into a number of quadrilaterals matching the number of available MPI pro-
cesses. If no user-defined domain decomposition is present, GPAW will try to minimize the aggregated surface
of the quadrilaterals. A real-space grid is represented as a three dimensional array where every point in the
grid can be a real or complex value (8 or 16 bytes)

4.1. Distributed Stencil Operation. Generally, it should be easy to obtain good scalability for a dis-
tributed stencil operation since computation grows faster than communication. If we look at a 3D grid of size
n × n × n the aggregated computation is O

(

n3
)

where as the aggregated communication is only O
(

n2
)

. The
operation should scale very well when n grows at the same rate as the number of CPUs. In GPAW, however,
scalability is very hard to obtain since the grid size will ordinarily not exceed 2003. Thus, the n is smaller than
200 even when parallelizing over thousands of CPUs.

The fact that the number of independent grids grows linearly with the number of valence electrons that a
simulated would normally make the problem embarrassingly parallel. Each MPI process could compute a whole
grid without the need of any communication, since no communication between grids is required in GPAW.
However, this is not possible because GPAW requires that every MPI process gets the same subset of every grid
(cf. Fig. 4.1).

One feature in GPAW, which makes it easier to parallelize, is the fact that the input grid and the output
grid used in the stencil operation is always two separate grids. We need therefore not consider the order in
which the grid-points are computed.

Applying a stencil operation on a grid involves all MPI processes. It is possible for an MPI process to
compute most of the points in the sub-grid assigned to it. However, points near the surface of the sub-grid,
surface points, are dependent on remote points located in neighboring MPI processes. This dependency is
illustrated in Fig. 4.2.

The straightforward approach, and the one used in GPAW, for making remote points available, is to exchange
the surface points between neighboring MPI processes before applying the stencil operation. The serialized
communication pattern looks like this:

1. Exchange surface points in the first dimension.
2. Exchange surface points in the second dimension.
3. Exchange surface points in the third dimension.
4. Apply the stencil operation.

5. Optimizations. In order to make GPAW run faster on the BGP, we have explored different optimiza-
tions. In this section, we will discuss the optimizations that have been beneficial for the overall performance.

The most obvious optimization is to exchange surface elements simultaneously in all three dimensions by
using the following non-blocking communication pattern:

1. Initiate the exchange of surface points in all three dimensions.
2. Wait for all exchanges to finish.
3. Apply the stencil operation.

The idea is to fully utilize the torus network in all six directions simultaneously, see Table 3.1.

Hybrid Parallel Programming for Blue Gene/P 269

Comm

n++

n++
Last iteration

start
n+1

Comm
start

n

Comm
wait

n

Comp
Stencil

n

Fig. 5.1: Flow diagram illustrating double buffering. The n’th iteration is expressed with a n and Comm and
Comp stands for communication and computation, respectively. n++ is an iteration to n’s successor.

Another important performance aspect is how to map the distributed real-space grids onto the physical
network topology. The 3D torus network is used for point-to-point communication in MPI, thus it is the
network, we should attempt to map the distributed real-space grids onto. Since the grids have the same number
of dimensions as the torus network, and since the stencil operation may use periodic boundary condition, a
torus topology is a perfect match to our problem. However, the BGP requires a partition with 512 or more
nodes to form a torus topology. A partition under 512 nodes can only form a mesh topology.

5.1. Multiple Real-space Grids. Double buffering and communication batching are two techniques
which can improve the performance of the stencil operation. Both techniques requires multiple real-space grids
but the stencil operation is typically applied on thousands of real-space grids.

5.1.1. Double Buffering. Double buffering is a technique that makes it possible to overlap communica-
tion and computation. The following communication pattern illustrates how (cf. Fig. 5.1):

1. Initiate the exchange of surface points in all three dimensions for the first grid.
2. Initiate the exchange of surface points in all three dimensions for the second grid.
3. Wait for all exchanges of the first grid to finish.
4. Apply the stencil operation on the first grid.
5. Initiate the exchange of surface points in all three dimensions for the third grid.
6. Wait for all exchanges of the second grid to finish.

The performance gain is dependent on the ability of the MPI library and the underlying hardware to process
non-blocking send and receive calls. On the BGP, progress in non-blocking send and receive calls will be
maintained by the DMA engine and increased performance is therefore expected.

5.1.2. Batching. An way to obtain critical packet size is to pack real-space grids into batches; inspired
by the message size experiment (cf. Fig. 3.1).

Continuously dividing the grids between more and more MPI processes reduces the number of surface points
in a single sub-grid. That is, at some point the amount of data send by a single MPI call will be reduced to
a size in which the MPI overhead and network latency will dominate the communication overhead. The idea
is to send a batch of surface points in each MPI call, instead of sending surface points, individually. This will
reduce the communication overhead considerably, as the size of the sub-grids decreases. The number of grids
packed together in this way, we call batch-size.

When using double buffering, it is important to allow the CPUs to start computing as soon as possible.
Combining a large batch-size with double buffering will therefore introduce a penalty as the initial surface points
exchange cannot be hidden. One approach to minimize this penalty, is to increase the batch-size continuously in
the initial stage. For instance a batch-size of 128 could be reduced to 64 in the initial exchange. This technique
we call sloped batching.

The amount of time used by waiting on non-hidden communication depends on many factors – some related
to the runtime system and some related to the implementation. A general expression of the relationship is given
in figure 5.2, which can be used to find the optimal batch-size and the optimal number of initial batch-size
increasements when doing sloped batching. The CPU overhead associated with a implementation of double
buffering and sloped batching is not included in the expression likewise the memory access time associated with
the stencil computation is also not included.

6. Programming Approaches. Different approaches exist when combining threads and MPI. To preserve
control we have chosen to handle the threading manually in pthread.

270 M. R. B. Kristensen, H. H. Happe and B. Vinter

l : latency
B : bandwidth
C : computation time of one stencil element
t : total stencil size
b : batch-size
n : number of batch-size increasements initially

WaitT ime = l +
b

2nB
+

n
X

i=1

max

„

0, l +
b

2i−1B
−

Cb

2i

«

+

max

„

0, l +
b

B
− Cb

« „

t

b
+ 1 − 2n+1

«

Fig. 5.2: Formula of the amount of time used by waiting on non-hidden communication when using double
buffering and sloped batching. The first line represents the initial communication, which can not overlap
computation. The second line represents the sloped bashing, in which the block-size is doubled in each iteration
and the third line represents the rest of the iterations, in which the block-size remains constant.

Fig. 6.1: A illustrates of the relationship between the four programming approaches – going from the Flat-
original approach to the Hybrid-multiple approach.

The following is a description of different programming approaches that we have investigated. Every pro-
gramming approach except the Flat-original uses the optimizations described in Sect. 5.

Flat-original is the approach originally used in GPAW. It uses the BGP’s virtual mode, where the four CPU-
cores are treated as individual nodes, to utilize all four CPU-cores. Therefore, it is not necessary to
modify anything to support the BGP architecture.

Flat-optimized is an optimized version of the original approach and just like the Flat-original it uses the
virtual mode.

Hybrid-multiple does not use the virtual mode. Instead, one hardware thread per CPU-core is spawned.
Every thread handles its own inter-node communication. The node will distribute the real-space grids
between its four CPU-cores, not by dividing the grids into smaller pieces but by assigning different
grids to every CPU-core. Because of this no synchronization is needed until all grids are computed and
the synchronization penalty is therefore constant. This way of exploiting multiple grids is the main
advantage of this approach.

Hybrid-master-only also spawns one thread per CPU-core, but only one thread, the master thread, handles
inter-node communication. Since we have to synchronize between every grid-computation, each grid-
computation will be divided between the four CPU-cores. The synchronization penalty thus become
proportional to the number of grids. On the other hand, this approach does work in SINGLE MPI-mode
and the overhead associated with MULTIPLE is therefore avoided.

Fig. 6.1 illustrates the relationship between the four programming approaches – from the original approach,
in which pure MPI programming is used and the wave-functions are partitioned inside the nodes, to the hybrid
approach where hybrid programming is used and the wave-functions are shared inside the nodes.

7. Results. A benchmark of each implementation has been executed on the Blue Gene/P (Sec. 3). 16384
CPU-cores or 4096 nodes or 4 racks were made available to us. Every benchmark graph compares the different
programming approaches of the stencil operation in GPAW and a periodic boundary condition is used in all
cases.

Hybrid Parallel Programming for Blue Gene/P 271

Time

M
P
I-
p
r
o
c
e
s
s
e
s

Communication

CPU idle (MPI_Wait)

Computation

Fig. 7.1: Profile of the communication and computation pattern when computing 1024 real-space grids on 1024
CPU-cores and the Hybrid-multiple approach is used. A line represents a MPI-process and the length of the
line represents the progress of time.

Fig. 7.2 is a classic speedup graph comparing every implemented approach with a sequential execution.
It is a relatively small job containing only 32 real-space grids. But because of the memory demand, it is not
possible to have more than 32 grids running on a single CPU-core.

The result clearly show that the best scaling and running time is obtained with Flat-optimized and Hybrid-
multiple both using a batch-size of 8 grids. Since the job only consists of 32 grids a batch-size of 8 is the
maximum if all four CPU-cores should be used. Another interesting observation is that the advantage of
batching is greater in Hybrid-multiple than in Flat-optimized. This indicates that if a job consist of more grids,
the Hybrid-multiple approach may become faster than Flat-optimized.

7.1. Communication and Computation Profile. The communication and computation profile be-
comes very important when scaling to a massive number of processes. As the number of MPI processes in-
creases the communication time has a tendency to increase due to network congestion. It is therefore essential
that communication is spread evenly between the CPU-core and that the diversity of the communication and
computation time is minimized.

Fig. 7.1 is a profile of the Hybrid-multiple approach executing on 1024 CPU-cores. It shows a distinct
pattern in which the communication and the computation phase are aligned throughout the execution. From
that it is evident that Hybrid-multiple actually do execute in a fairly synchronized manner and no ripple effect
of waiting processes is observed.

7.2. Multiple Real-space Grids. As the number of grids grow there is a corresponding linear growth
in the computation required in the stencil operation. It is therefore possible to create a Gustafson graph by
increasing the number of grids in the same rate as the number of CPU-cores (cf. Fig. 7.3). It is important to
note that the required communication per node increases faster than the needed computation. This is due to the
increased surface size associated with the additional partitioning of the grids. To illustrate this communication
increase, the right graph in Fig. 7.3 shows the needed communication per node for Flat-optimized and Hybrid-
multiple respectively.

If we, for example, look at a computation of a grid with a size of 1923 using 1024 nodes, the grid will
either be divided between 1024 MPI processes when using Hybrid-multiple or 4096 MPI process when using
Flat-optimized. Flat-optimized needs to communicate approximately 140KB more data per node than Hybrid-
multiple. Note that this is only for a single real-space grid, the different will grow linearly with the number of
grids in the computation.

At 512 CPU-cores Hybrid-multiple is faster than Flat-optimized. The main reason is the difference in the

272 M. R. B. Kristensen, H. H. Happe and B. Vinter

 0

 500

 1000

 1500

 2000

 2500

 1 512 1024 2048 4096

S
pe

ed
up

No. of CPU-cores

Flat optimized
Hybrid multiple

Hybrid master-only
Flat original

 0

 500

 1000

 1500

 2000

 2500

 1 512 1024 2048 4096

S
pe

ed
up

No. of CPU-cores

Flat optimized
Hybrid multiple

Hybrid master-only

Fig. 7.2: Speedup of the stencil operation. The job consist of only 32 real-space grids all with a size of 1443. In
the left graph batching is disabled and in the right graph batching is enabled using a batch-size of 8.

needed communication. Flat-optimized divides the grids four times more than the Hybrid-multiple. We did
not see this effect in the speedup graph, Fig. 7.2, because of the small number of grids. Furthermore, Hybrid-
multiple is better to exploit an increase in grids because of the thread synchronization overhead. The overhead
is small and constant, but since the total running time is very small for 32 grids (9 milliseconds with 2048
CPU-cores), the impact of the synchronization overhead is drastically reduced when the number of grids, and
thereby the total running time, is increased.

To investigate the scalability of a large job with many real-space grids, we have made a scalability graph
beginning at 1k CPU-cores, which allows for a 2816 grid job (cf. Fig. 7.4). Again Hybrid-multiple has the
best performance - going from 1k to 16k CPU-cores gives a speedup of approximately 12.5 where 16 would be
linear but unobtainable due to the increase in the needed communication. If we compare the running time of
Hybrid-multiple with Flat-original, we see a 94% performance gain at 16384 CPU-cores.

To further investigate the performance difference between Hybrid-multiple and Flat-optimized, we have
made a small experiment. We modifies Flat-optimized to statically divide the real-space grids into four sub-
groups. It is now possible for all four CPU-cores to work on its own sub-group and the real-space grids will
be divided into the same level as in Hybrid-multiple. The only difference between the two approaches is that
Flat-optimized uses the virtual mode in Blue Gene/P and Hybrid-multiple uses threads. It should be noted,
however, that in a real GPAW computation this modification does not work, since GPAW requires that every
MPI process gets the same subset of every real-space grid, see Sect 4. The experiment is not included in any of
the graphs since its performance is identical with the Hybrid-multiple. Because of the identical performance,
we find it reasonable to conclude that the level of real-space partitioning is the sole reason for the performance
difference between Hybrid-multiple and the non-modified Flat-optimized.

8. Conclusions. Overall this work has managed to improve the performance of a domain specific stencil
code when scaling to a very high degree of parallelism. The primary improvements are obtained through
the introduction of asynchronous communication which, even in a well balanced system such as the Blue Gene,
efficiently improves processor utilization. Furthermore, two hybrid programming approaches have been explored:
the hybrid multiple and the master-only approach.

The hybrid programming approach, in which inter-node communication is handled individually by every
thread, has shown a positive impact on the performance. By allowing every thread to handle its own inter-node
communication, the overhead for thread synchronization remains constant and the application becomes faster
than the non-hybrid version.

On the other hand, the alternative hybrid programming approach, in which one thread handles the inter-
node communication on behalf of all threads in the process, cannot compete with the non-hybrid version. That
is explained by the overhead that is introduced by thread synchronization which grows proportional to the
number of grids in the computation.

When comparing our fastest implementation compared to the original implementation, the hybrid program-

Hybrid Parallel Programming for Blue Gene/P 273

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 2048 4096 8192 16384

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

No. of CPU-cores and real-space grids

Flat optimized
Hybrid multiple

Hybrid master-only
Flat original

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1 2048 4096 8192 16384

C
om

m
un

ic
at

io
n

pe
r

no
de

 in
 M

B

No. of CPU-cores and real-space grids

Flat programming
Hybrid programming.

Fig. 7.3: Gustafson graphs showing the running time of the stencil operation and the needed inter-node com-
munication when the number of real-space grids is increasing in the same rate as the number of CPU-cores -
one grid per CPU-core. The left graph shows the running time and the right graph shows the needed inter-node
communication. The grid size are 1923 and the best batch-size has been found for every number of CPU-cores.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

1k 2k 4k 8k 16k

R
un

ni
ng

 ti
m

e
in

 s
ec

on
ds

No. of CPUs

Flat optimized
Hybrid multiple

Hybrid master-only
Flat original

 0

 2

 4

 6

 8

 10

 12

 14

1k 2k 4k 8k 16k

S
pe

ed
up

No. of CPUs

Flat optimized
Hybrid multiple

Hybrid master-only
Flat original

Fig. 7.4: A scalability graph starting at 1024 CPU-cores running the stencil operation. In the left graph the
running time of every approach is shown and in the right graph every approach is compared against the fastest
approach on 1024 CPU-cores namely the Hybrid-multiple. All jobs consists of 2816 real-space grids all size of
1923, and the best batch-size has been found for every number of CPU-cores.

ming approach combined with the latency-hiding techniques is 94% faster at 16384 CPU-cores. Translated into
utilization this means that CPU utilization grows from 36% to 70%.

While latency-hiding is the primary factor for the improvement we observe, the hybrid implementation is
still 10% faster than the non-hybrid approach.

8.1. Further Work. Overall we are satisfied with the performance of the new implementation of the
stencil operation, still a lot of work remains if the entire GPAW computation should utilize latency-hiding and
hybrid programming. It may not be worth the hard work that is needed to rewrite most of GPAW.

Acknowledgments. The authors would like to thank The Danish Agency for Science, Technology and
Innovation and the GPAW team at the Technical University of Denmark in particular Jens J. Mortensen and
Marcin Dulak. Furthermore we would like to thank Argonne National Laboratory for giving us access to the
Blue Gene/P.

REFERENCES

274 M. R. B. Kristensen, H. H. Happe and B. Vinter

[1] J. Backus, Can programming be liberated from the von neumann style?: A functional style and its algebra of programs,
Communications of the ACM, 16 (1978), pp. 613–641.

[2] P. E. Blochl, Projector augmented-wave method, Phys. Rev. B, 50 (1994), pp. 17953–17979.
[3] F. Cappello and D. Etiemble, Mpi versus mpi+openmp on the ibm sp for the nas benchmarks, SC Conference, 0 (2000),

p. 12.
[4] W. Gropp, S. Huss-Lederman, A. Limsdaine, E. Lusk, W. Saphir, and M. Snir, The Complete Reference: Volume 2, the

MPI-2 Extensions, MIT Press, 1998.
[5] W. Gropp, E. Lusk, and A. Skjellum, Using MPI Portable Parallel Programming with the Message Passing Interface, The

MIT Press, 1994.
[6] D. S. Henty, Performance of hybrid message-passing and shared-memory parallelism for discrete element modeling, Super-

computing, ACM/IEEE 2000 Conference, (2000), pp. 10–10.
[7] M. Hipp and W. Rosenstiel, Parallel Hybrid Particle Simulations Using MPI and OpenMP, Springer-Verlag Berlin Heidel-

berg, 2004, pp. 189–197.
[8] J. J. Mortensen, L. B. Hansen, and K. W. Jacobsen, Real-space grid implementation of the projector augmented wave

method, Physical Review B, 71 (2005), p. 035109.
[9] I. B. G. TEAM, Overview of the ibm blue gene/p project, IBM Journal of Research and Development, 52 (2008).

[10] B. Vinter and J. M. Bjørndalen, A comparison of three mpi implementations, in Communicating Process Architectures
2004, I. R. East, D. Duce, M. Green, J. M. R. Martin, and P. H. Welch, eds., 2004, pp. 127–136.

Edited by: Dana Petcu and Marcin Paprzycki
Received: May 1, 2011
Accepted: May 31, 2011

Scalable Computing: Practice and Experience

Volume 12, Number 2, pp. 275–282. http://www.scpe.org
ISSN 1895-1767

c© 2011 SCPE

SOME GEOMETRIC PROBLEMS ON OMTSE OPTOELECTRONIC COMPUTER

SATISH CH. PANIGRAHI∗AND ASISH MUKHOPADHYAY†

Abstract. Optical Multi-Trees with Shuffle Exchange (OMTSE) architecture is an efficient model of an optoelectronic com-
puter. The network has a total of 3n3/2 nodes. The diameter and bisection width of the network are 6 log n − 1 and n3/4
respectively. In this note, we present synchronous SIMD algorithms on an OMTSE optoelectronic computer for the following prob-
lems in computational geometry: Convex Hull, Smallest Enclosing Rectangle, All-Farthest/All-Nearest Neighbors, Closest/Farthest
pair, Maximal Points. The strength of the proposed algorithms over the existing algorithms on OMULT has also been discussed.

Key words: Parallel Algorithms, Optoelectronic Computer, Computational Geometry, OTIS Mesh, OMULT

1. Introduction. Optical interconnections are superior in power, speed with less crosstalk properties as
compared to electronic interconnections when the interconnection distance is more than a few millimeters [1, 6].
Motivated by these observations, some new hybrid optoelectronic computer architectures utilizing both optical
and electronic technologies have been proposed and investigated by several researchers [8, 10, 13, 15]. In these
architectures, both the electronic link and the optical link are done where the former is being considered within
the same physical package (e.g. chip) where as the latter is for the pair of processors that are kept in different
packages.

A number of parallel algorithms on these optoelectronic computers have been addressed and studied exten-
sively [3, 4, 5, 7, 8, 9, 10, 14]. In this paper we present some computational geometry algorithms such as Convex
Hull, Smallest Enclosing Rectangle, All-Farthest/All-Nearest Neighbor, Closest/Farthest pair, Maximal Points,
on OMTSE optoelectronic computer [8, 10]. Irrespective of different factor network of OMTSE than OMULT,
here in this paper we show that Convex hull and Smallest Enclosing Rectangle problem for n points can be
solved on OMTSE in O(log n) time with the same time complexity as on OMULT [2]. Here it is worth noting
that the total number of processors of OMULT and OMTSE respectively be δ1 = n2(2n− 1) and δ2 = n2(3n

2)
(we have δ1 < δ2, as because of their topological nature we can assume that n ≥ 4). Islam et al. in [2] stated
that algorithm for empirical cumulative distribution, all nearest neighbor can be implemented on OMULT in
O(log n) time for n number of points. In this paper we explore this line of work farther and implement the
algorithms such as All-Farthest/All-Nearest Neighbor, Closest/Farthest pair among n2 points in O(n log n) time
and also provide an algorithm for maximal points among n3 data points in O(log n) time.

The rest of the paper is organized as follows. In section 2 we briefly present the topological property of the
OMTSE System. In section 3, we describe our propose algorithms and finally we conclude in section 4.

2. Topology of OMTSE. The factor network used in OMTSE topology constitutes two layer Trees with
Shuffle Exchange (TSE) network. The TSE is nothing but an interconnection network containing a group of
2k, k ≥ 1, complete binary trees of height one and the roots of these binary trees are connected with Shuffle-
Exchange fashion. The OMTSE interconnection system consists of n2 TSE networks, which are organized in
the form of an n×n grid in matrix form. We denote the TSE network placed at ith row and jth column of this
matrix by Gij , 1 ≤ i, j ≤ n. Each TSE network has n nodes at layer 2 and n/2 nodes at layer 1 which results in
N = 3n3/2 processors in total. The nodes within each TSE network are interconnected by usual electronic links,
while the nodes at layer 2 (i.e. the layer having leaf processors) of different TSE networks are interconnected by
optical links according to the rules defined below. Let us label the nodes in each TSE network Gij , 1 ≤ i, j ≤ n,
by distinct integers from 1 to 3n/2 in reverse order, i.e., the nodes at both layer 2 and 1 of TSE network are
numbered from 1 to 3n/2 in order from left to right. The node, k, in a TSE network Gij will be referred as the
processor P (i, j, k), 1 ≤ i, j ≤ n, 1 ≤ k ≤ 3n/2. We can now define the optical links interconnecting only leaf
nodes in different TSE networks in the following way.

∗School of Computer Science, University of Windsor, Canada(panigra@uwindsor.ca).
†School of Computer Science, University of Windsor, Canada(asishm@cs.uwindsor.ca)

275

276 S. Ch. Panigrahi and A. Mukhopadhyay

Fig. 2.1: An example of OMTSE topology with n = 4

(1) Processor P (i, j, k), 1 ≤ i, j, k ≤ n, j 6= k, is connected to the processor P (i, k, j) by bi-directional optical
link called horizontal inter-TSE link.

(2) Processor P (i, j, k), 1 ≤ i, j ≤ n, i 6= k, is connected to the processor P (k, j, i) by bi-directional optical
link called vertical inter-TSE link.

The diameter of a network is defined as the maximum distance between any two processing nodes in
the network. If we start from a node P (i, j, k), 1 ≤ i, j ≤ n, 1 ≤ k ≤ 3n/2, we can reach another node
P (i′, j′, k′), 1 ≤ i′, j′ ≤ n, 1 ≤ k′ ≤ 3n/2, of the OMTSE interconnection system by traversing the path

P (i, j, k)→ P (i, j, j′)→ P (i, j′, j)→ P (i, j′, i′)→ P (i′, j′, i)→ P (i′, j′, k′)

It can easily be seen that the diameter of OMTSE topology is 6 log n − 1 which is O(log n) comprising of
6 logn−3 electronic links and 2 optical links. Similarly we can find out the bisection width of OMTSE topology
is equal to n3/4. An Example of OMTSE topology for n = 4 with partial links is shown in FIG. 2.1.

3. Proposed Algorithms.

3.1. Convex Hull. The convex hull [11] of a set of points S in the plane is smallest convex polygon P
that encloses S, smallest in the sense that there is no other polygon P ′ such that P ⊃ P ′ ⊇ S. To find the
convex hull for a given set of points S on a plane we need to identify the extreme points, in particular, what
constitutes constructing the boundary. Suppose |S| = n and assume that no three points in S are collinear then
our algorithm employs the result of the following theorem discussed in [14].

Theorem 3.1. For any point pi ∈ S, let pj0, pj1, ..., pjn−2 be the points in S − pi (i.e. pjk 6= pi, 0 ≤ k ≤

n− 2), sorted by the polar angle made by the vector
→

pipjk, 0 ≤ k ≤ n− 2. The point pi is an extreme point of
S iff there is a k, 0 ≤ k ≤ n−2, such that counterclockwise angle between pik and pi(k+1)mod(n−1) is more than π.

Some Geometric Problems on OMTSE Optoelectronic Computer 277

a b

c d

e

(a)

a b

c d

e

(b)

a b

c d

e

(c)

Fig. 3.1: Example for Theorem 3.1:(a) Original Layout, (b) pi = e, (c) pi = c

We assume that each leaf processor P (i, j, k)(1 ≤ i, j, k ≤ n) has three registers, represent by A(i, j, k),
B(i, j, k) and C(i, j, k). We have a set of points S = p1, p2, ..., pn in which no three points are collinear. The
coordinates of all n points are initially stored in the A-register of the leaf nodes G11.

Algorithm: ConvexHull()

Input: ∀k, 1 ≤ k ≤ n
A(1, 1, k)← pk

Output: ∀k, 1 ≤ k ≤ n
Extreme points ← B(1, 1, k)

Step 1: ∀i, j; 1 ≤ i, j ≤ n, do in parallel
Broadcast all these n points to the A-register of the respective leaf nodes
of Gij [9].

Step 2: ∀i, j, k; 1 ≤ i, j, k ≤ n, do in parallel
Broadcast the point in the A-register of P (i, j, i) to all the B(i, j, k)
of Gij .

Step 3: ∀i, j, k; 1 ≤ i, j, k ≤ n, do in parallel

Compute the polar angle of the vector
→

pipik at P (i, j, k) of Gij and store
in C(i, j, k) along with the zero vector.

Step 4: ∀i, j, k; 1 ≤ i, j, k ≤ n, do in parallel

Sort the n vectors
→

pipik stored in the C-register of the leaf nodes of each
Gij . After this step we assume the sorted order list given by each Gij is

pipi1, pipi2, ..., pipin (i.e. in each Gij the vector
→

pipi1 always represent the
zero vector.)

Step 5: ∀i, j, k; 1 ≤ i, k ≤ n, and 2 ≤ j ≤ n, do in parallel
Broadcast the content of C(i, j, j) to A(i, j, k).

Step 6: ∀i; 1 ≤ i ≤ n, do in parallel
i) ∀j, 2 ≤ j ≤ n− 1,

Calculate the counter clockwise angle between
→

pipij and
→

pipi(j+1) at each
Gij and store the result in C(i, j, j + 1)
ii) ∀j, j = n,

Calculate the counter clockwise angle between
→

pipin and
→

pipi2 at each Gin

and store it in C(i, n, 2).
Step 7: ∀i; 1 ≤ i ≤ n, do in parallel

i) ∀j; j = 1
C(i, j, 1)← 0.

278 S. Ch. Panigrahi and A. Mukhopadhyay

ii) ∀j; 2 ≤ j ≤ n− 1
if ((C(i, j, j + 1) > π))
C(i, j, 1)← 1.
else
C(i, j, 1)← 0.
iii) ∀j; j = n
if ((C(i, n, 2) > π))
C(i, n, 1)← 1.
else
C(i, n, 1)← 0.

Step 8: ∀i, j; 1 ≤ i, j ≤ n, do in parallel
C(i, 1, j)← C(i, j, 1). /∗ through the horizontal optical link content of
C(i, j, 1) is moved to C(i, j, 1) ∗ /

Step 9: ∀i, k; 1 ≤ i, k ≤ n, do in parallel
if (C(i, 1, k) == 0)
B(i, 1, 1)← NULL. /∗ if the content of C-register of all leaf nodes of Gi1

is 0 then reset B(i, 1, 1) to NULL value ∗/
Step 10: ∀i, 1 ≤ i ≤ n, do in parallel

B(1, 1, i)← B(i, 1, 1). /∗ through the vertical optical link content of
B(i, 1, 1) is moved to B(1, 1, i) ∗ /

Hence the extreme points of the convex hull can be taken from the B-register of all leaf nodes of G11

excluding the NULL entries. In order to analyze the time complexity of the above algorithm we also consider
the data movements along the both electronic link and optical link. For the complete group broadcast [9] the
step 1 needs 4 logn−2 electronic moves and 3 optical moves. For the required intra-group group broadcast [8] the
step 2 and 5 need 2 log n− 1 electronic move. For the basic assignment and geometry operations we can assume
that the steps 3, 6, 7 and 9 need O(1) time. The required sorting (see appendix) of n points at corresponding
Gij , 1 ≤ i, j ≤ n the step 4 needs 7 log n− 1 electronic move and 5 optical move. In addition, for the required
inter-group data movement the step 8 and 10 need one optical move. Thus overall, we need O(log n) to compute
the convex hull.

Theorem 3.2. Algorithm PCH requires O(log n) time to compute the convex hull of n points.

The above algorithm can be extended for the smallest enclosing rectangle of n points within O(log n) time as
discussed in [2]. But it would be interesting to devise algorithm for convex hull and smallest enclosing rectangle
among n2 data points on both OMULT and OMTSE optoelectronic computer.

3.2. All-Nearest/All-Farthest Neighbor. All-Nearest(All-Farthest) Neighbor problem can be stated
as follows: given a set S = {p1, p2, ..., pq} of q points, for each point pi ∈ S we wish to determine a point
pj ∈ {S − pi} such that the Euclidean distance ‖pi − pj‖ is minimum(maximum).

In order to implement All-Nearest Neighbor (All-Farthest Neighbor can be dealt analogously) problem for
n2 points, we assume that each leaf processor P (i, j, k), 1 ≤ i, j, k ≤ n, has four registers A, B, C and D; where
as each non-leaf processor P (i, j, k), 1 ≤ i, j ≤ n, n+1 ≤ k ≤ 3n

2 , has two registers A and B. Initially, the points
p(i−1)+k is stored in the A(i, i, k)of all the diagonal leaf nodes of Gii, 1 ≤ i ≤ n, where as all the D-registers
of OMTSE system are set to zero. Set a counter variable c to zero at B-register of each non leaf processor of
OMTSE optoelectronic system. Here we describe the algorithm in the following steps

Algorithm AllNearestNeighbor()

Input: ∀i, k, 1 ≤ i, k ≤ n
A(i, i, k)← p(i−1)+k

Output: ∀i, k, 1 ≤ i, k ≤ n
Nearest Neighbor of p(i−1)+k ← C(i, i, k)

Step 1: Perform a column group broadcast [8].
Step 2: While (c < n) do

Some Geometric Problems on OMTSE Optoelectronic Computer 279

Step 2.1: ∀i, j, 1 ≤ i, j ≤ n, do in parallel
if (c == 0)
Broadcast the content of A(i, j, i) to B-registers of all leaf nodes of Gij .
else
Broadcast the content of B(i, j, 1 + (j%n)) to B-register of all leaf
nodes of Gij .

Step 2.2: ∀i, j, k, 1 ≤ i, j, k ≤ n, do in parallel
D(i, j, k)← ‖A(i, j, k)−B(i, j, k)‖
if (D(i, j, k) == 0)
D(i, j, k)←∞

Step 2.3: ∀i, j, k, 1 ≤ i, j, k ≤ n, do in parallel
Compute the minimum of values stored in each D-register of Gij

and store the result in C(i, j, 1 + ((j + c− 1)%n)).
Step 2.4: ∀i, j, k, 1 ≤ i, j, k ≤ n,do in parallel

Perform horizontal optical move on the content of B-registers so that
the data from each side move to the corresponding leaf nodes.

Step 2.5: ∀i, j, k, 1 ≤ i, j ≤ n, n + 1 ≤ k ≤ 3n
2 , do in parallel

c = c + 1.

Step 3: ∀i, j, k, 1 ≤ i, j, k ≤ n and j 6= k, do in parallel
Perform horizontal optical move on the content of C-registers so that the
data from each side move to the corresponding leaf nodes.

Step 4: ∀i, k, 1 ≤ i, k ≤ n, do in parallel
Compute the minimum of values stored in each C-register of Gki and store
the result in C(k, i, i).

Step 5: ∀i, k, 1 ≤ i, k ≤ n and i 6= k, do in parallel
C(i, i, k)← C(k, i, i)/∗ Vertical Optical Move ∗/

For the required column group broadcast the step 1 requires 2 logn − 1 electronic moves and 3 optical
moves. The Step 2.1 requires 2 logn − 1 electronic moves for intergroup broadcast. To find the minimum in
each group Gij , the step 2.3 and step 4 require O(log n) time. Again the Step 2.4, Step 3 and Step 5 require one
optical move each. For the basic increment and distance measure we can assume that the Step 2.2 and Step 2.5
require O(1) time. Since we have n iterations of while loop in Step 2, the overall complexity of the algorithm is
O(n log n) for n2 points.

3.3. Closest-Pair/Farthest-Pair of Points. This problem can be defined as follows: given a set S =
{p1, p2, ..., pq} of q points, ∃{pi, pj} ∈ S such that euclidean distance ‖pi − pj‖ is minimum(maximum). The
closest pair of points can be found by first solving the All-Nearest neighbor problem and then determining the
closest pair among the nearest problem of each point. Here we describe the basic algorithm for n2 points in
following steps

Algorithm: ClosestPairPoints()

Input: ∀i, k, 1 ≤ i, k ≤ n
A(i, i, k)← p(i−1)+k

Output: Closest-pair ← C(1, 1, 1)

Step 1: AllNearestNeighbor()
Step 2: ∀i, 1 ≤ i ≤ n

Compute the minimum at each Gii and store the result in C(i, i, 1)
Step 3: ∀i, 1 ≤ i ≤ n

C(1, i, i)← C(i, i, 1)
Step 4: ∀i, 1 ≤ i ≤ n

C(1, i, 1)← C(1, i, i)
Step 5: Compute the minimum at G11 and store the result in C(1, 1, 1)

280 S. Ch. Panigrahi and A. Mukhopadhyay

The algorithm ClosestPairPoints require additional 3 logn−1 electronic moves and 2 optical moves which
will be subsumed by the O(n log n) of AllNearestNeighbor algorithm.

3.4. ECDF. In ECDF (empirical cumulative distribution function) problem [14], we are given a set S =
{p1, p2, ..., pq} of q distinct points. For {pi(xi, yi), pj(xj , yj)} ∈ S, we will say pi dominates pj iff xi ≥ xj and
yi ≥ yj . For all pi ∈ S, we are going to determine the number points it dominates in set S. In the FIG 3.2
we have illustrated a dominating relationship between three points p1, p2, and p3. In this case, the number of
points dominated by p1, p2 and p3, respectively are 1, 1, and 0.

X

Y

Fig. 3.2: Example of dominating relation

The algorithm to implement ECDF for n2 is quite similar to the AllNearestNeighbor algorithm. Here in
order to get dominating value of point p(i−1)+k at corresponding C(i, i, k), in step 2.2 of AllNearestNeighbor
algorithm the D-register value is set to 1 if B-register point dominates its A-register point. Then in Step
2.3, we need to compute the summation of all D-register value with in that group and store the result in
C(i, j, 1 + ((j + c− 1)%n)). After this the D-register is reset to zero and contiue the loop while c < n. Further,
in Step 4 we need to compute the summation of values stored in each C-register of Gki and store the result in
C(k, i, i). Finally in Step 5 we get the dominating value of point p(i−1)+k at corressponding C(i, i, k).

To compute the summation in shuffle exchange network [12] takes the same complexity as to compute the
minimum. Thus the time taken to implement ECDF for n2 points is same as that of AllNearestNeighbor
algorithm i. e. O(n log n).

3.5. Two-Set Dominance. The two set dominance problem can stated in this way: We have given two
sets S1 = {p1, p2, ..., pp} and S2 = {q1, q2, ..., qq}, for each point pi ∈ S1(or qj ∈ S2) we wish to determine the
number points in S2(or S1) is dominated by pi(or qj). This is quite similar to the ECDF and can be achieved
with O(n log n) for ‖S1 + S2‖ = n2 points.

3.6. Maximal Points. A point p ∈ S is maximal iff it dominates all the points in S. This is quite simple
and can be achieved by O(log n) time for ‖S‖ = n3 points as follows.

Algorithm: MaximalPoint
Input: Arbitrarily assign the n3 points to n3 leaf processors of OMTSE

optoelectronic computer.
Output: Maximal point ← A(1, 1, 1)
Step 1: ∀i, j, 1 ≤ i, j ≤ n,

Each group Gij determine the maximal point with in that group and store
the result in A(i, j, 1)

Step 2: ∀i, j, 1 ≤ i, j ≤ n,

Some Geometric Problems on OMTSE Optoelectronic Computer 281

A(i, 1, j)← A(i, j, 1)
Step 3: ∀i, 1 ≤ i ≤ n,

Each group Gi1 determine the maximal point with in that group and store
the result in A(i, 1, 1)

Step 4: ∀i, 1 ≤ i ≤ n,
A(1, 1, i)← A(i, 1, 1)

Step 5: The group G11 determine the maximal point with in that group and store
the result in A(1, 1, 1)

For finding the local maximal points with in a group, the Step 1, 3 and 4 requires O(log n) electronic moves
each. Further, for the inter group communication we require one optical move each for the Step 2 and 4. Thus
overall we have O(log n) algorithm with exactly 3 logn electronic moves and 2 optical moves. Now if we define
minimal points analogous to maximal points, the above algorithm can be improved slightly to get both the
maximal and minimal points out of n(n − 1)2 points with 4 logn + 4 electronic moves and 3 optical moves as
discussed in [10].

4. Conclusion. We have shown that several computational geometry problems can be solved on OMTSE
optoelectronic computer efficiently. It would be interesting to devise the discussed algorithms for n3 number of
points on OMTSE and OMULT system.

Acknowledgments. This research is supported by an NSERC Individual Discovery Grant to second au-
thor.

REFERENCES

[1] M. R. Feldman, S. C. Esener, C. C. Guest, and S. H. Lee, Comparison between optical and electrical interconnects based
on power and speed considerations, Appl. Opt., 27 (1988), pp. 1742–1751.

[2] R. Islam, N. Afroz, S. Bandyopadhyay, and B. P. Sinha, Computational geometry on optical multi-trees (OMULT)
computer system, in CCCG, 2005, pp. 150–154.

[3] P. K. Jana, Improved parallel prefix computation on optical multi-trees, in India Annual Conference, 2004. Proceedings of
the IEEE INDICON 2004. First, 20-22 2004, pp. 414 – 418.

[4] P. K. Jana, Polynomial interpolation and polynomial root finding on otis-mesh, Parallel Computing, 32 (2006), pp. 301–312.

[5] P. K. Jana and K. Sinha, Permutation algorithms on optical multi-trees, Comput. Math. Appl., 56 (2008), pp. 2656–2665.

[6] A. V. Krishnamoorthy, P. J. Marchand, F. E. Kiamilev, and S. C. Esener, Grain-size considerations for optoelectronic
multistage interconnection networks, Appl. Opt., 31 (1992), pp. 5480–5507.

[7] D. K. Mallick and P. K. Jana, Parallel prefix on mesh of trees and otis mesh of trees, in PDPTA, H. R. Arabnia and
Y. Mun, eds., CSREA Press, 2008, pp. 359–.

[8] S. C. Panigrahi, S. Paul, and G. Sahoo, OMTSE - an optical interconnection system for parallel computing, in Advanced
Computing and Communications, 2006. ADCOM 2006. International Conference on, 20-23 Dec 2006, pp. 626 –627.

[9] , Parallel prefix computation, sorting and reduction operation on OMTSE architecture, in ICACC 2007 International
Conference, 9-10 Feb 2007, pp. 616 –622.

[10] S. C. Panigrahi and G. Sahoo, An MIMD algorithm for finding maximum and minimum on OMTSE architecture, Scalable
Computing: Practice and Experience, 9 (2008), pp. 69–75.

[11] F. P. Preparata and M. I. Shamos, Computational geometry: an introduction, Springer-Verlag, New York, 1985.

[12] M. J. Quinn, Parallel computing (2nd ed.): theory and practice, McGraw-Hill, Inc., New York, NY, USA, 1994.

[13] B. P. Sinha and S. Bandyopadhyay, OMULT: An optical interconnection system for parallel computing, in Euro-Par,
M. Danelutto, M. Vanneschi, and D. Laforenza, eds., vol. 3149 of Lecture Notes in Computer Science, Springer, 2004,
pp. 856–863.

[14] C.-F. Wang and S. Sahni, Computational geometry on the OTIS-mesh optoelectronic computer, in ICPP, IEEE Computer
Society, 2002, pp. 501–.

[15] F. Zane, P. Marchand, R. Paturi, and S. Esener, Scalable network architectures using the optical transpose interconnection
system (OTIS), J. Parallel Distrib. Comput., 60 (2000), pp. 521–538.

Appendix

For the sake of explaining the basic idea, in this appendix we discuss how the sorting of n distinct elements can
be performed in OMTSE optoelectronic computer. Let’s assume that each processor P (i, j, k), 1 ≤ i, j, k ≤ n, has two
registers R1(i, j, k) and R2(i, j, k). Initially we have n distinct elements {a1, a2, a3, ..., an} stored in R1-register of n leaf
nodes of G11. We can sort these elements by finding rank of each element in the list. Thus the objective of the algorithm
is to place the element of rank r, 1 ≤ r ≤ n in the processor P (1, 1, r).

282 S. Ch. Panigrahi and A. Mukhopadhyay

Algorithm Sort()

Step 1: Perform a column broadcast [8] so that the list of elements stored in the leaf
nodes of G11 broad casted to the corresponding leaf nodes all Gi1, 1 ≤ n.

Step 2: ∀i, 1 ≤ i ≤ n, do in parallel
Broadcast the element ai to R2-register of all leaf nodes of Gi1. Set a Flag as 1
if ai greater than other element in R1-register of same leaf node. Otherwise set
Flag as zero. The value of the Flag variable can be kept in R2-register which may
overwrite previous entries.

Step 3: ∀i, 1 ≤ i ≤ n, do in parallel
Compute the summation of all Flag values stored on each leaf nodes of Gi1, which
is the rank(r) of the element ai in the given list.
Remark: As a result of summation in the shuffle exchange network [12] the
rank value will reflect in all nodes of shuffle exchange layer of Gi1.

Step 4: ∀i, 1 ≤ n, do in parallel
if the rank of ai is r then the element ai is moved to R1(i, 1, r).

Step 5: ∀i, 1 ≤ n, do in parallel
R1(r, 1, i)← R1(i, 1, r) /∗ Vertical optical link ∗/

Step 6: ∀i, 1 ≤ n, do in parallel
R1(r, 1, 1)← R1(r, 1, i)

Step 7: ∀r, 1 ≤ r ≤ n, do in parallel
R1(1, 1, r)← R1(1, 1, r) /∗ Vertical optical link ∗/

For the complexity analysis of the above algorithm we also consider the data movement along the electronic and
optical link. The above algorithm needs (7 log n − 1) communication steps along electronic links and 5 communication
steps along optical links [8] giving overall O(log n) time algorithm. The idea can be extended to sort n2 data values in
O(n log n) time but this is beyond the scope of this paper.

Edited by: Dana Petcu and Marcin Paprzycki
Received: May 1, 2011
Accepted: May 31, 2011

AIMS AND SCOPE

The area of scalable computing has matured and reached a point where new issues and trends require a pro-
fessional forum. SCPE will provide this avenue by publishing original refereed papers that address the present
as well as the future of parallel and distributed computing. The journal will focus on algorithm development,
implementation and execution on real-world parallel architectures, and application of parallel and distributed
computing to the solution of real-life problems. Of particular interest are:

Expressiveness:
• high level languages,
• object oriented techniques,
• compiler technology for parallel computing,
• implementation techniques and their effi-

ciency.

System engineering:
• programming environments,
• debugging tools,
• software libraries.

Performance:
• performance measurement: metrics, evalua-

tion, visualization,
• performance improvement: resource allocation

and scheduling, I/O, network throughput.

Applications:

• database,

• control systems,

• embedded systems,

• fault tolerance,

• industrial and business,

• real-time,

• scientific computing,

• visualization.

Future:

• limitations of current approaches,

• engineering trends and their consequences,

• novel parallel architectures.

Taking into account the extremely rapid pace of changes in the field SCPE is committed to fast turnaround
of papers and a short publication time of accepted papers.

INSTRUCTIONS FOR CONTRIBUTORS

Proposals of Special Issues should be submitted to the editor-in-chief.
The language of the journal is English. SCPE publishes three categories of papers: overview papers,

research papers and short communications. Electronic submissions are preferred. Overview papers and short
communications should be submitted to the editor-in-chief. Research papers should be submitted to the editor
whose research interests match the subject of the paper most closely. The list of editors’ research interests can
be found at the journal WWW site (http://www.scpe.org). Each paper appropriate to the journal will be
refereed by a minimum of two referees.

There is no a priori limit on the length of overview papers. Research papers should be limited to approx-
imately 20 pages, while short communications should not exceed 5 pages. A 50–100 word abstract should be
included.

Upon acceptance the authors will be asked to transfer copyright of the article to the publisher. The
authors will be required to prepare the text in LATEX2ε using the journal document class file (based on the
SIAM’s siamltex.clo document class, available at the journal WWW site). Figures must be prepared in
encapsulated PostScript and appropriately incorporated into the text. The bibliography should be formatted
using the SIAM convention. Detailed instructions for the Authors are available on the SCPE WWW site at
http://www.scpe.org.

Contributions are accepted for review on the understanding that the same work has not been published
and that it is not being considered for publication elsewhere. Technical reports can be submitted. Substantially
revised versions of papers published in not easily accessible conference proceedings can also be submitted. The
editor-in-chief should be notified at the time of submission and the author is responsible for obtaining the
necessary copyright releases for all copyrighted material.

