
SCALABLE COMPUTING

Practice and Experience

Special Issue: Selected Papers From the 2nd

Workshop on Software Services

Editors: Dana Petcu and Jose Luis Vazquez-Poletti

Volume 12, Number 3, September 2011

ISSN 1895-1767

U
U

NIVERSITATEA DE VEST

DIN TIMISOARA



Editor-in-Chief

Dana Petcu

Computer Science Department
West University of Timisoara
and Institute e-Austria Timisoara
B-dul Vasile Parvan 4, 300223
Timisoara, Romania
petcu@info.uvt.ro

Managinig and

TEXnical Editor

Fr̂ıncu Marc Eduard

Computer Science Department
West University of Timisoara
and Institute e-Austria Timisoara
B-dul Vasile Parvan 4, 300223
Timisoara, , Romania
mfrincu@info.uvt.ro

Book Review Editor

Shahram Rahimi

Department of Computer Science
Southern Illinois University
Mailcode 4511, Carbondale
Illinois 62901-4511
rahimi@cs.siu.edu

Software Review Editor

Hong Shen

School of Computer Science
The University of Adelaide
Adelaide, SA 5005
Australia
hong@cs.adelaide.edu.au

Domenico Talia

DEIS
University of Calabria
Via P. Bucci 41c
87036 Rende, Italy
talia@deis.unical.it

Editorial Board

Peter Arbenz, Swiss Federal Institute of Technology, Zürich,
arbenz@inf.ethz.ch

Dorothy Bollman, University of Puerto Rico,
bollman@cs.uprm.edu

Luigi Brugnano, Università di Firenze,
brugnano@math.unifi.it

Bogdan Czejdo, Fayetteville State University,
bczejdo@uncfsu.edu

Frederic Desprez, LIP ENS Lyon, frederic.desprez@inria.fr

Yakov Fet, Novosibirsk Computing Center, fet@ssd.sscc.ru

Andrzej Goscinski, Deakin University, ang@deakin.edu.au

Janusz S. Kowalik, Gdańsk University, j.kowalik@comcast.net

Thomas Ludwig, Ruprecht-Karls-Universität Heidelberg,
t.ludwig@computer.org

Svetozar D. Margenov, IPP BAS, Sofia,
margenov@parallel.bas.bg

Marcin Paprzycki, Systems Research Institute of the Polish
Academy of Sciences, marcin.paprzycki@ibspan.waw.pl

Lalit Patnaik, Indian Institute of Science, lalit@diat.ac.in

Boleslaw Karl Szymanski, Rensselaer Polytechnic Institute,
szymansk@cs.rpi.edu

Roman Trobec, Jozef Stefan Institute, roman.trobec@ijs.si

Marian Vajtersic, University of Salzburg,
marian@cosy.sbg.ac.at

Lonnie R. Welch, Ohio University, welch@ohio.edu

Janusz Zalewski, Florida Gulf Coast University,
zalewski@fgcu.edu

SUBSCRIPTION INFORMATION: please visit http://www.scpe.org



Scalable Computing: Practice and Experience

Volume 12, Number 3, September 2011

TABLE OF CONTENTS

Selected Papers From the 2nd Workshop on Software Services:

Introduction to the Special Issue iii

Dana Petcu and Jose Luis Vazquez-Poletti

Vehicle routing problems with the use of multi-agent system 283

Lukasz Chomatek and Aneta Poniszewska-Maranda

Support of Semantic Interoperability in a Service-based Business

Collaboration Platform 293

Karol Furd́ık, Peter Bednár, Gabriel Lukác̆ and Christoph Fritsch

The Semantic Middleware for Networked Embedded Systems Applied

in the Internet of Things and Services Domain 307

Peter Kostelńık, Martin Sarnovský and Karol Furd́ık

Secure Access Mechanism for Cloud Storage 317

Danny Harnik, Elliot K. Kolodner, Shahar Ronen, Julian Satran,
Alexandra Shulman-Peleg and Sivan Tal

A Virtualization-based Approach to Dependable Service Computing 337

Ciprian Dobre, Florin Pop, Valentin Cristea and Ovidiu-Marian Achim

An Adaptive and Scalable Replication Protocol on Power Smart Grids 351

Joan Navarro, José Enrique Armendáriz-Iñigo and August Climent

A Hybrid Firefly-inspired Approach for Optimal Semantic Web Service

Composition 363

Cristina Bianca Pop, Viorica Rozina Chifu, Ioan Salomie, Ramona
Bianca Baico, Mihaela Dinsoreanu and Georgiana Copil

Abstraction layer for cloud computing 371

Binh Minh Nguyen, Viet Tran and Ladislav Hluchy

c© SCPE, Timişoara 2011





Scalable Computing: Practice and Experience

Volume 12, Number 3, pp. iii–iv. http://www.scpe.org
ISSN 1895-1767
c© 2011 SCPE

INTRODUCTION TO THE SPECIAL ISSUE ON SELECTED PAPERS FROM 2ND

WORKSHOP ON SOFTWARE SERVICES

Dear SCPE readers,

This September issue of Scalable Computing: Practice and Experience is the first of two issues devoted to
Cloud Computing and Applications based on Software Services.

To ensure the high quality of this issue, a reduced number of contributions that were presented at 2nd
WoSS (Timisoara, June 6-9 2011) were chosen and an invitation to provide an extended version was sent. The
reviewers were the same as in the Workshop so the peer-review process was exhaustive, from the abstract status
prior to the Workshop until the final version that you will be reading. Additionally, the priceless feedback
gathered during 2nd WoSS definitely increased the contribution quality.

Many of the authors come from countries that joined the European Union recently. This demonstrates that
the European Research Family is not only growing up but also reunites around the Cloud Computing table, a
bleeding edge and promising area which is expected to bring much outstanding outcome.

Dana Petcu,
Computer Science Department
West University of Timisoara
and Institute e-Austria Timisoara, Romania

Jose Luis Vazquez-Poletti,
Distributed Systems Architecture Group
Faculty of Computer Science, Universidad Complutense de Madrid, Spain

iii





Scalable Computing: Practice and Experience

Volume 12, Number 3, pp. 283–291. http://www.scpe.org
ISSN 1895-1767
c© 2011 SCPE

VEHICLE ROUTING PROBLEMS WITH THE USE OF MULTI-AGENT SYSTEM

LUKASZ CHOMATEK∗AND ANETA PONISZEWSKA-MARANDA†

Abstract. Increasing number of vehicles on the roads caused the increase of popularity of GPS devices that the drivers can
install in their cars. Efficient vehicle routing is very significant task nowadays, as the number of vehicles on the roads is growing
rapidly. As many drivers have an ability use a computer while planning their itinerary, they need to have an application to find
the best route for them.

The paper describes a new approach for path finding problem. The proposition of solving the path finding problem with the
use of multi-agent system is proposed. The idea of multi-agent system includes cooperation between autonomous software agents
to complete a certain task.

Key words: vehicle routing, path finding problem, single source shortest path problem, multi-agent systems

AMS subject classifications. 68N02, 68T02

1. Introduction. Increasing number of vehicles on the roads caused the increase of popularity of GPS
devices that the drivers can install in their cars. Internet sites, where it is possible to compute efficient route
from one point to another are also popular, because they are not only maps but also can fulfill some needs of
the user. The user’s needs can be divided into some groups:

• saving of time - user of the system only needs to know the destination address and in some cases he
needs to enter the start point as well because the path is computed automatically by the system,

• finding some information - system can show the way to the nearest restaurant, gas station or shop,
• informing about the situation on the road, e.g. traffic jams, speed cameras, road works, accidents.

Both mentioned websites and GPS devices have to execute large numbers of queries about the route between
points on the map. The website is a service dedicated for the large number of users and GPS device has to
reflect dynamically changing road conditions (i.e. driver was supposed to turn left on the crossroads but went
straight and now the system must compute a detour). Large number of queries can only be handled when either
users’ requests can be processed in a longer time or by use of very efficient path finding algorithms.

The most efficient algorithms for solving Single Source Shortest Path (SSSP) are hierarchical approaches [1].
They are usually based on the fact that some road segments can be marked as having higher importance than
others. What is more, road network can be preprocessed by removing some nodes and introduce some shortcuts
instead (i.e. there is only one connection from one node to another, so all nodes between them can be substituted
by a direct link for this nodes).

The paper describes the proposition of solving the path finding problem with the use of multi-agent system.
The idea of multi-agent system includes cooperation between autonomous software agents to complete a certain
task [9, 10]. For solution of SSSP problem based on road network hierarchy,the agents can be divided into
some groups: graph constructing agents, agents interacting with the system user and miscellaneous agents.
The second significant term in the domain of multi-agent systems is the environment, in which the agents are
located [11]. In the case of road traffic it is very well defined and contains hardly any subjective factors. It
includes vehicles, roads, road signs and signals and some important places which are usually named points of
interest (POI). Road environment is obviously dynamic, due to the fact that hardly any part of it remains
unchanged for a long time.

The paper is structured as follows: section 2 presents the approaches used to solve the problem of hierarchical
single source shortest path. Section 3 describes the proposition of algorithm for road network division while
section 4 deals with multi-agents system for road network hierarchization problem. Section 5 describes the
results obtained during the use of system application.

2. Approaches of hierarchical single source shortest path. Typical algorithms designed for solving
SSSP problems do not use any preprocessing of the graph. Preprocessing phase can take a long time, so that
such algorithms can be easily applied, when there is a little number of queries about the shortest path. Most
popular SSSP solving algorithms are Dijkstras algorithm, Bellman-Ford algorithm and A* algorithm.

∗Institute of Information Technology, Technical University of Lodz, Poland (lukasz.chomatek@p.lodz.pl)
†Institute of Information Technology, Technical University of Lodz, Poland (anetap@ics.p.lodz.p)

283



284 L. Chomatek and A. Poniszewska-Maranda

Table 2.1: N0
3 for all vertices of the sample graph

v N0
3 (v)

0 {0, 2, 3}
1,2 {0, 1, 2}
3 {0, 3, 4}
4,5 {2, 4, 5}

Hierarchical algorithms include some kind of preprocessing of the graph in order to shorten the time required
to process a single query. It is notably important when number of queries is very high and sometime can be
expended before deployment of the system.

The algorithm of Hierarchical Path Views proposed in the literature [4, 5] was based on the following ideas:
• base road network was split into some fragments - places of split were chosen by its geographical
coordinates,

• connections which are outside generated fragments belong to higher hierarchy level,
• division and level transfer is an iterative process.

The result of such a division are the matrices containing the shortest path lengths for each segment and
each level. After the division phase, to perform a query, A* algorithm was used.

Base for other branch of hierarchical algorithms for solving SSSP problem was Highway Hierarchies algo-
rithm proposed in [1, 2]. Dijkstras algorithm is used in the preprocessing phase to calculate the neighborhood
for each vertex. Next, the vertices that fulfill some criteria are moved to the higher hierarchy level. When
this phase is done, the higher hierarchy level is preprocessed that allows to generate shortcuts between certain
vertices. Number of hierarchy levels and size of the neighborhood are parameters of the algorithm. Proper
choose of them influences on the amount of time needed to process a single query.

2.1. Highway Hierarchies Algorithm. Highway Hierarchies algorithm requires two parameters: H that
identifies the degree to which the requests for the shortest way are met without coming to a higher level in the
hierarchy, and L, which represents the maximum permissible hierarchy level. The method used to iteratively
generate a higher level with number l + 1 for a graph Gl is as follows:

1. For each vertex v ∈ V , build the neighborhood N l
H for all vertices reached from v by using Dijkstras

algorithm in graph Gl, respecting the H constraint. Set the state of the vertex V to ”active”.
2. For each vertex:

• Build the partial tree B(v) and assign to each vertex its state. The state of the vertex is inherited
from the parent vertex every time when the vertex is reached or settled. Vertex becomes ”passive”
if on the shortest path < v, u, ..., w >, where v 6= u 6= w :

|N l
H(u) ∧N l

H(w)| ≤ 1

Partial tree is completed, when reached but unsettled vertices don’t exist.
• For each vertex t, which is a leaf node in the tree B(v) move each edge (u,w), where
u(N↓H

↑l(t), w(N↓H
↑l(v) to the higher hierarchy level.

During the first stage, a highway hierarchy is constructed, where each hierarchy level Gl, for l < L, is a
modified subgraph of the previous level graph Gl−1. Therefore, no canonical shortest path in Gl−1 lies entirely
outside the current level for all sufficiently distant path endpoints. This ensures that all queries between far
endpoints on level l − 1 are mostly carried out on level l, which is smaller, thus speeding up the search.

2.2. Example of Highway Hierarchies Algorithm use. Let consider how the algorithm works for a
simple graph. Let L = 1 and H = 3. First, N0

3 has to be calculated for each vertex v ∈ V using Dijkstras
algorithm. The results are shown in table 2.1.

The construction of B(v) for the example of vertex v0 is shown above. This process is similar for other
vertices:

1. Initial state of obtained v0 is ”active”.



Vehicle routing problems with the use of multi-agent system 285

1 2

0

3 4

51
1

2

3

2

2
5

2

1

1

2

Fig. 2.1: Example of road network graph

2. Dijkstra’s algorithm:
(a) Vertex v0 is settled, the path is empty.
(b) Vertices v2 and v3 are reached from v0 with, respectively 1 and 2. Their state is set to ”active”

(inherited from v0).
(c) Vertex v2 with cost 1 is settled on the path < v0, v2 >. Passivity condition is not satisfied, because

there are too few nodes on the path.
(d) Vertex v1 is reached from v2 (cost 3) and its state is set to ”active”.
(e) Vertex v3 is settled with cost 2 on the path < v0, v2 >.
(f) Vertex v4 is reached from v3 (cost 4).
(g) Vertex v1 is settled on the path < v0, v2, v1 > with cost 3. As N0

3 (v2) ∧N0
3 (v1) = {v0, v2}, vertex

v1 stays ”active”.
(h) Vertex v4 becomes settled with cost 4 on the path < v0, v3, v4 >. As N0

3 (v3)∧N0
3 (v4) = {v3} , its

state is set to ”passive”.
(i) Vertex v5 is reached from v4 with cost 5 and its state is set to ”passive” (inherited from v4).
(j) While there are no reached and active vertices, the algorithm terminates.

3. Leaf vertices are v1 and v5.
(a) For vertex v1 we iterate back on the path < v0, v2, v1 >. For pair (v1, v2): v1 ∈ N0

3 (v2) and
v2 ∈ N0

3 (v1). Therefore, that edge stays on level 0. The edge (v2, v0) also stays on level 0.
(b) We perform the backward iteration process on the path < v0, v3, v4, v5 >. For example

v↓3(N↓H
↑l(v↓5) and v↓4(N↓H

↑l(v↓0), so the < v3, v4 > is moved to level 1.

The result of Highway Hierarchies algorithm is shown on figure 2.1. Dashed lines represent the edges on
the level 1 and continuous lines represent edges on level 0.

3. Proposed road network division algorithm. Some parts of the construction phase of Highway
Hierarchies algorithm can be performed concurrently:

• weight assignment for each road segment, in general using different rules,
• construction of N l

h neighborhoods for each vertex in graph,
• construction of B(v) trees.

We decided to try performing division of road network graph, so that Highway Hierarchies algorithm can be
performed on a single part of this graph. After completion of the algorithm on each part, all subgraphs should
be merged to obtain a final Highway Hierarchies graph.

To perform the devision of a graph, Breadth First Search (BFS) algorithm was applied for certain vertices
as follows:

1. Get a list BFSstart of vertices mentioned to be start points for BFS.
2. For each vertex v ∈ BFSstart create empty lists Ev and Vv to store the information about edges and

vertices that belong to the subgraph.
3. For each vertex v ∈ BFSstart:

(a) For the vertices from BFS queue, check if their children are allocated in any subgraph. If not,
add them to BFS queue for current vertex and to Vv. Add corresponding edges to Ev.



286 L. Chomatek and A. Poniszewska-Maranda

exposes

utilizes

WCF Services

registration

queries
Directory FacilitatorAgent

responses

Fig. 4.1: System dependencies from the agent point of view

4. Check if all vertices of the base graph are not allocated in on of the subgraphs. If not, go to step 3.
5. Perform representation dependent postprocessing for each set Vv (i.e. reorder vertices if needed).

Such an algorithm can be applied to connected graph, if there are more than one connected components in
the road network graph. Described division can be performed for each connected component treated as a base
graph.

In the presented algorithm some edges can be not included in any graph. They can be denoted as E′.
After performing construction phase of Highway Hierarchies algorithm on each subgraph, these edges must be
included in the result graph. It is a two-step process:

1. For each vertex v ∈ BFSstart add all of the vertices from Vv and all edges from Ev to the final graph.
2. For each edge e ∈ E′ that connects vertices Vs and Vd get the highest hierarchy level from all incoming

edges of vertex Vs.

4. Multi-agent systems and its application for road network hierarchization problem. The
standards of architecture for multi-agent systems were described by FIPA organization [7]. Due to this specifi-
cation, multi-agent system consists of some number of Agent Platforms that were as a parts of the system and
they can be used to host the agents. Each Agent Platform consists of three parts to handle the management of
agents:

• Message Transport System (MTS) that is supposed to be used by the agents for communication,
• Agent Management System (AMS) that represents a catalog of existing agents,
• Directory Facilitator (DF) that stores the information about the services provided by the agents.

The analysis of modern programming techniques shows that some practices can be applied in newly designed
multi-agents systems:

• use Service Oriented Architecture (SOA) to simplify and improve the possibilities of agent communi-
cation,

• make Directory Facilitator the mandatory part of multi-agent system,
• try to apply the enterprise design patterns such as dependency injection to coordinate the communica-
tion of agents on a single machine,

• simplify the architecture using the Windows Communication Foundation (WCF) [6, 7].

The introduction of web services allowed the developers to connect the applications based on different
software and hardware platforms, for example Java and .NET Framework. The Web Services use a specific
protocol to expose a schema of transferred data and allow the clients to make the synchronous calls of exposed
methods [3].

Some generalization of such a system is described in [3]. In this approach the extended Directory Facilitator
component plays the major role in the system because it keep all the information about services offered by the
agents. All the services offered by agents are Web Services or some of their extensions such as WCF services
(Fig. 4.1) [6].

4.1. Application of agents from building the road network hierarchies graph. Application of
multi-agent system for building Highway Hierarchies graph was proposed in [8]. Two main assumptions were
made for proposed application of multi-agent system for building Highway Hierarchies graph:

• system must be able to take into account the user’s preferences (i.e. route should be the shortest,
traveling time should be lowest) and environmental conditions (i.e. weather, time of a day),



Vehicle routing problems with the use of multi-agent system 287

• computations should be done concurrently, where it is possible to be done.

To complete the first of these assumptions, weights of the road segments must be assigned using different
criteria, such as length, average traveling time, speed limits, etc. It was decided to introduce some number of
reactive agents that collect the data from different road segments. This type of agents can work in two different
ways, depending on the data structure which is used to store the road network technology. The first way is
associated with the nodes as it is easy to get information about edges connected to the node. Second way is
related to edges. If list of edges in the graph is directly provided, it can be divided into some parts and each
part can be analyzed by a single agent.

However graph are usually represented in a hierarchical way, where nodes are on the top level and data for
edges is usually kept as a list for each node. The complete list of edges is helpful for weight assignment criteria
based only on some properties of a single edge (i.e. length, speed limit). On the other hand, some important
information can be kept in nodes one can consider criterion of avoiding bigger crossroads so that all of the road
segments connected to such node should have its weight properly adjusted.

In our system both graph nodes and edges are kept in the separate lists. However references are duplicated
and it simplifies the way of access to the needed data and allows the simple and complex weight assignment
rules.

Regardless of the chosen solution, this process can be performed in parallel, what means sharing work for
several agents. Depending on the selection criteria by which individual weights are calculated, work on each
road section may perform one or more agents (each can calculate the weight using different method). If the
weight of the segment is calculated on the basis of several criteria, use of a coordinating agent for the weights
assignment process can be considered. The coordinating agent can calculate weight in accordance with certain
rules (e.g. use the weighted average of the values calculated by the agents). Coordinating agent may have some
adaptive abilities, depending on the application of the system [8].

Concurrent computation can be also applied in the other parts of Highway Hierarchies graphs creation
process. Obviously, calculation of neighborhood N l

H for each vertex is independent of each other. The only
nuisance is that for each vertex, different queue of vertices intended to be visited must be kept. Any number of
agents can be used to calculate such a neighborhood. Depending on the developer choice, these agents cooperate
directly with agents responsible for assigning weights to graph edges or with the coordinating agent.

The creation of trees B(v) is another process that can be done in parallel by agents for the individual
vertices of the graph. This process should to be implemented through the cooperation with agents that build
the neighborhoods.

The responses to user’s queries for the system should take into account his preferences regarding the itinerary
and the current conditions on the road. It might be necessary to create several Highway Hierarchies graphs,
which will be used to obtain a system response depending on certain factors. Different graphs can be prepared
for example for the city center during peak hours and at night. To implement this assumption, the introduction
of a special type of agent can be considered. Such an agent will redirect the user query to the appropriate
Highway Hierarchies graph. Relay agent may assist in work of coordinating agent by suggesting the criteria by
which the weight of the edge should be calculated [8].

Proposed architecture of multi-agent system described above is shown on figure 4.2. The tests revealed
that for diverse criteria the calculated hierarchies differ very much. The results obtained for three proposed
criteria: speed limits, traveling time and road length, shown that these hierarchies graphs have at each level
only a few common edges with other hierarchies graphs. Moreover, expected convergence between dominating
user’s preference and number of common edges with the hierarchies graph for this criterion was observed.

4.2. Fastening Highway Hierarchies graph construction process. Application of multi-agent sys-
tem described above shown that such architecture can be successfully used both for handling user’s preferences
and speeding up construction process of Highway Hierarchies graph. In order to apply improvements described
in section 3, an architecture of multi-agent system must be significantly changed.

There are two new types of agents required to perform such process:

• Graph splitting agents, which are supposed to prepare proper split of the graph and pass the information
to corresponding neighborhood calculators. Graph splitting agents can be considered as social agents
as they have to cooperate with other graph splitting agents while doing their work, because some edges
can be allocated in different subgraphs.

• Graph merging agent, which task is to merge subgraphs prepared by splitting agents according to certain



288 L. Chomatek and A. Poniszewska-Maranda

Weight
Assignment

Neighborhood
Calculator

Preferences
Handler

USER

Query
ProcessorWeight

Assignment
Coordinator

Tree Builder

proposed
weights

weights
preferences

neighborhood
data

weights

Highway
Hierarch
data

query

response

preferences

Fig. 4.2: Types of agents in Highway Hierarchies algorithm

rules. Although the work of this agent looks complicated, it is reactive agent it has to wait for the
graph splitting agents to complete their work, so that he can perform the merging process.

Introduction of new types of agents to the system implies changes in the data flows in the system. Preferences
Handler agent still cooperates withWeight Assignment Coordinator agent in order to pass the information about
user’s needs. Graph Splitting agents can divide graph into subgraphs and then cooperate with Neighborhood
Calculator agents and Tree Builder agents to prepare partial Highway Hierarchies graphs. Next, Graph Merging
agent can prepare final division of the road network into hierarchy levels. Query processor agent cooperates
directly only with Graph Merging agent. Dependencies between other types of agents remain unchanged.

5. Results of system application. Algorithm described above was implemented using C# 4.0 language
in Windows environment. Tests were run on different maps both for single and split road network graph.
Exemplary result of full graph division is shown on figure 5.1. Figure 5.2 presents the results of algorithm
performed on a subgraph.

In general, road segments on the top hierarchy levels in the full graph are on high hierarchy level in a part
of the graph too, overall number on the highest hierarchy level is smaller for the subgraphs. It is caused by the
fact that when the number of edges is smaller, promotion to the higher hierarchy level is harder.

The tests performed for both maps shown that the time needed to execute the calculations depends in
slight degree on the number of edges in the subgraph. In case of real road map, both subgraphs contain after
a division the exact number of vertices. However, the first part contains significantly more edges. The time
needed to compute the hierarchy levels for both parts were almost identical. The second graph was an artificial
road mesh, where after a division the number of edges was the same in the both parts. Performed tests shown
that the time of computing for both subgraphs was also the same in this case.

Highway Hierarchies algorithm was run for the whole artificial and real road graph using such parameters:

• maximum hierarchy level: 3,
• Dijkstras neighborhood size: 5.

In the next step, Highway Hierarchies was run for the subgraphs with identical parameters. Obtained
results for subgraphs show that when a division is made, number of edges on each level differs from number of
these edges when the whole graph is taken into account in Highway Hierarchies. For real road network, such
a difference was up to 70%. It was caused by the fact that large number of edges was included in the first
subgraph. This difference for the artificial road network was smaller then in the real network.

It is harder to reach higher hierarchy level in smaller graphs (larger graphs usually contain longer paths).
Therefore, we decided to decreases the size of Dijkstra neighborhood used in the division into the hierarchies.
This was supposed to facilitate the promotion to higher hierarchy levels (step 2b of Highway Hierarchies al-



Vehicle routing problems with the use of multi-agent system 289

Fig. 5.1: Example of Hierarchical Division for neighborhood of Technical University of Lodz HH(3,5)

Fig. 5.2: HH algorithm performed for a subgraph HH(3,5)

gorithm). In the case of real road network, number of edges on each hierarchy level was closer to one in the
reference division (about 37% better result). In the case of artificial road graph, the difference in number of
edges on each level between result obtained for Highway Hierarchies computed for whole graph and for two sub-
graphs was about 7%. Generally, decreasing size of Dijkstra neighborhood resulted in lower differences between
reference hierarchical division and a division made for subgraphs.

The second test was performed to check, whether HH algorithm for spitted graph is faster than the algorithm
ran for the whole graph. Results are gathered in the table 5.2. Values are given in percents that represent the
amount of time needed to perform each phase of the algorithm in addition to time needed to construct Highway
Hierarchies for the whole graph. When the algorithm is supposed to build the hierarchies with greater number
of levels, the gain is the highest. When number of maximum level is set to 1, the gain is not so high.



290 L. Chomatek and A. Poniszewska-Maranda

Table 5.1: Number of edges on each level for different HH parameters and maps

Road Level HH(3,5), HH (3,3), 2 % diff HH (3,5), 2 % diff

Network Whole subgraphs subgraphs

graph

Technical 0 707 750 6,08203678 922 30,41018

Univ. of Lodz

1 451 343 23,9467849 274 39,24612

2 136 131 3,67647059 93 31,61765

3 613 234 61,8270799 177 71,12561

Artificial 0 242 215 11,1570248 251 3,719008

mesh

1 264 239 9,46969697 261 1,136364

2 184 170 7,60869565 184 0

3 440 452 2,72727273 380 13,63636

Table 5.2: Time amount needed to complete each phase of the algorithm for split road graph in addition to
time needed for HH construction for whole graph

HH parameters First subgraph Second subgraph Merge Split

Technical University of Lodz

(3,5) 10,7% 11,4% 3,5% 2,1%

(3,3) 7,3% 7,5% 5,0% 3,0%

(1,3) 11,8% 11,9% 25,4% 15,2%

Artificial mesh

(3,3) 18,0% 17,6% 18,5% 18,9%

(3,5) 19,6% 19,4% 9,5% 9,7%

6. Conclusions. The presented paper focuses on the problems of efficient vehicle routing. Nowadays these
problems are very important because of increasing number of vehicles on the roads. More and more drivers
have the abilities of use the devices to support the planning of their itinerary and it is important to find the
new solutions, new algorithms to improve the applications for finding the best routs taking into consideration
different criteria, static and dynamic. The use of agent concept and use of multi-agent approach seems to be
the interesting solution for solving the problems with vehicle routing and finding the optimal itinerary.

Performing the hierarchical division of road network on the split of the road graph can improve the con-
struction phase processing time due to the lower computational complexity. Number of edges on certain levels
in subgraphs can differ very much from these from division of whole graph. Adjusting hierarchical algorithm
parameters can improve results of divisions of subgraphs.

Multi-agent system can be utilized to solve this problem, what allows to compute most parts of the algorithm
in parallel. Architecture of presented multi-agent system is extensible. There is a possibility to implement new
types of agents for different graph split methods.

REFERENCES



Vehicle routing problems with the use of multi-agent system 291

[1] P. Sanders and D. Schulters, Engineering highway hierarchies, LNCS 4168, pages 804-816, 2006.
[2] P. Sanders and D. Schulters, Highway hierarchies hasten exact shortest path queries, LNCS 3669, pages 568-579, 2005.
[3] L. Chomatek and A. Poniszewska-Maranda, Modern Approach for building of Multi-Agent Systems, LNCS 5722, pages

351-360, 2009.
[4] G. Nannicini, P. Baptiste, G. Barbier, D. Krob and L. Liberti, Fast paths in large-scale dynamic road networks, Compu-

tational Optimization and Applications , 45 (1), pages 143-158, 2008.
[5] D. Eppstein, M. Goodrich and L. Trott, Going off-road: transversal complexity in road networks, Proceedings of 17th

ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pages 23-32, 2009.
[6] C. Vasters, Introduction to Building WCF Services, MSDN Library, 2005.
[7] FIPA, Abstract Architecture Specification, 2002.
[8] L. Chomatek, Multi-agent approach for building highway hierarchies graph, Proceedings of 31th International Conference

Information Systems, Architecture and Technology, Szklarska Poreba, Poland, September 2010.
[9] M. Wooldridge, An Introduction to MultiAgent Systems, John Wiley & Sons, 2002.
[10] G. Weiss, Multi-Agent Systems, The MIT Press, 1999.
[11] M. Singh and M. Huhns, Readings in Agents, Morgan-Kaufmann Pub., 1997.

Edited by: Dana Petcu and Jose Luis Vazquez-Poletti
Received: August 1, 2011
Accepted: August 31, 2011





Scalable Computing: Practice and Experience

Volume 12, Number 3, pp. 293–305. http://www.scpe.org
ISSN 1895-1767
c© 2011 SCPE

SUPPORT OF SEMANTIC INTEROPERABILITY IN A SERVICE-BASED BUSINESS

COLLABORATION PLATFORM

KAROL FURDÍK†‡, PETER BEDNÁR†, GABRIEL LUKÁC̆†, AND CHRISTOPH FRITSCH§

Abstract. The paper describes a system prototype that is aiming at the provision of an environment for flexible project-
oriented collaboration of networked enterprises, so-called virtual business alliances. The system, which was developed within the
FP7 project SPIKE, employs the technology of semantically enhanced service bus, supported by underlying semantic structures
such as ontologies and abstract business process models. The focus of this approach is to achieve effective interoperability of possibly
heterogeneous services provided and consumed by members of the collaboration environment. The architecture of the main system
modules is presented and the processing of semantically annotated services orchestrated in a collaboration workflow is explained in
more details.

Key words: semantic annotation of services, business process ontologies, semantic interoperability, networked enterprises

AMS subject classifications. 94-04, 94B99

1. Introduction. Recent achievements in information and communication technologies (ICT) towards
cross-network communication, cloud computing, service-based architectures and standardised interfaces bring
new opportunities and challenges in many areas. When applied to the e-Business domain, these advanced
technologies can improve flexibility and adaptability of business collaboration in so-called networked or cloud
enterprises [26], which can be established as a temporal inter-organisational business alliance of enterprises and
organisations co-operating on a well-defined project. Such a collaboration is usually characterised by rapidly
varying business environments and requires proper technological background enabling interoperable provision
and consumption of services between alliance members. Moreover, business processes in this type of networked
enterprises need to be defined, structured and maintained on the alliance level as an inter-company composition
of particular processes and services provided or consumed by the alliance participants in an interoperable
manner.

The concept of interoperability in its technical, organisational, and semantic aspects was identified and
emphasised in numerous initiatives and reports as a crucial, cross-cutting task in e-Business field [25] and other
related areas. Semantic interoperability, which will be specifically addressed in next sections of this paper, refers
to seamless service invocation, communication, and information exchange in an ICT environment of e-Business
solutions based on principles of Service Oriented Architectures (SOA). According to this approach, services,
which are formally described (i.e. annotated) by concepts of a standardised and shared knowledge base, can
be provided, accessed, orchestrated, invoked, executed, and used in a flexible manner. Inputs, outputs, and
other characteristics of possibly heterogeneous services can be semantically matched and integrated, enabling
composition of services into customisable workflow structures. Moreover, the advanced technology of Enterprise
Service Bus (ESB) [9] can be combined with the underlying semantic infrastructure and be employed to mediate
potential incompatibilities of communicating services and applications, orchestrate their interactions, and make
the integrated services available for broad access and re-use [20].

Various approaches for ICT solutions that enable networked enterprises by means of semantically enhanced
ESB were designed and proposed, namely in several European research and development projects integrated
in the FInES cluster [26]. Some of the most relevant projects, together with related approaches and technol-
ogy frameworks, are discussed in the following subsection. In this context, we will present a specific approach
for achieving semantically interoperable services, which was designed and adopted in the European project
SPIKE (Secure Process-oriented Integrative Service Infrastructure for Networked Enterprises, FP7-217098,
http://www.spike-project.eu). The project lasted from January 2008 till March 2011 and was co-founded by
the European Commission within the 7th Framework Programme. The project consortium consisted of eight
partners from five European countries and was coordinated by the University of Regensburg, Germany.

†Technical University of Košice, Faculty of Electrical Engineering and Informatics, Letná 9, 042 00 Košice, Slovakia.
(Karol.Furdik@tuke.sk, Peter.Bednar@tuke.sk, Gabriel.Lukac@tuke.sk).

‡InterSoft, a.s., Floriánska 19, 040 01 Košice, Slovakia. (Karol.Furdik@intersoft.sk).
§University of Regensburg, Department of Information Systems, Universitätsstraße 31, 93053 Regensburg, Germany.

(Christoph.Fritsch@wiwi.uni-regensburg.de).

293



294 K. Furdik et al.

SPIKE targets the interoperability of services and processes in networked enterprises, focusing on the
design and development of a software platform that enables easy, fast, and secure start-up of virtual business
alliances. Particular emphasis is given on semantically enhanced business processes that are capable to integrate
heterogeneous services provided and consumed by alliance members, security aspects of service access, single-
sign-on principles and identity federation, which is supported by the ESB-based semantic infrastructure of
ontologies, services, and business processes [15]. The description of the SPIKE system, together with its
principles and main outcomes, is presented in this paper. The remainder of this paper is organised as follows.
Section 1.1 brings an overview of related research, including related projects and supportive technologies that
were employed in SPIKE. The vision, objectives, and general approach of SPIKE are presented in Section
1.2. The following sections specifically focus on individual aspects of our designed and developed solution.
Section 2 describes an overall system architecture, particular functional components and their interactions. The
semantic infrastructure for service annotation and workflow specification is presented in Section 3. It includes
a description of semantically enhanced ESB, means of dynamic service selection, composition, and execution
in the environment of business alliances. Section 4 provides an overview of pilot applications and the results
achieved during the testing of the system prototype. Finally, Section 5 summarises the project outcomes and
identifies possible directions of future research and development.

1.1. Related Approaches and Technologies. The central concept of the SPIKE solution (cf. Section
1.2 and Section 3) is a semantically enhanced ESB that allows interoperability of services provided or consumed
by participants of business alliance. It is based on general ESB technology, which can be seen as a messaging
and communication middleware that defines standardised service interfaces and message routing for possibly
heterogeneous and incompatible applications or services [9]. The implementation of the ESB technology in
an organisation typically requires a specification of workflow structures that model particular processes, tasks,
actions, and flow of information artefacts and messages between communicating applications. Construction
of these workflow-based models is known as business process modelling and is nowadays mostly handled by
the standardised BPMN (Business Process Modelling Notation, http://www.bpmn.org) and BPEL (Business
Process Execution Language, [2]) notations. However, the ESB infrastructure itself and the notations for process
modelling are both focusing on syntactic specification of interfaces, message exchange, and workflow structures.
An effective integration of services and processes, which would be based on the meaning expressed in a machine-
readable way, was identified as one of key challenges in ESB-related research [16].

The vision of semantic business process modelling, formulated in [17] and further elaborated, for example, in
the European FP6 integrated project SUPER [4], aims at achieving a higher degree of automation in discovery
and mediation of co-operating services [27]. The use of semantic technologies, namely Semantic Web services
and underlying ontologies, for process modelling, service configuration, execution, monitoring, and analysis
is envisioned as a method that can overcome the heterogeneity and incompatibility problems towards the
semantically interoperable services. It may also help to reduce the human intervention throughout the life cycle
of business process modelling [21]. The Semantic Service Bus, which can be seen as an enhancement of general
ESB, makes use of semantic description of service capabilities, properties, and exchanged information artefacts,
which then enables the service integration by means of automated service discovery, routing, composition and
data mediation [20].

Semantically enhanced business process modelling, workflow management, and design of semantic ESB
is in focus of research and standardisation organisations such as the Object Management Group (OMG,
http://www.omg.org), W3C consortium (http://www.w3c.org), OASIS group (http://www.oasis-open.org), or
Workflow Management Coalition (WfMC, http://www.wfmc.org). In the European context, particular solu-
tions were provided as outcomes of several FP6 and FP7 research projects, mostly integrated in the FInES
cluster initiative [26]. Some of the projects, identified as relevant and related to the SPIKE approach, are:

• STASIS (FP6-034980, http://www.stasis-project.net) provides an infrastructure for semantic mapping
of services by means of a distributed peer-to-peer repository and shareable ontology structure [5];

• TrustCom (FP6-001945, http://www.eu-trustcom.com) has designed a framework for trust, security
and contract management for service-based collaboration of networked enterprises;

• SUPER (FP6-026850, http://www.ip-super.org) provides a framework for semantic business process
management, including generic formal languages, process models, and shareable ontology resources [4];

• COIN (FP7-216256, http://www.coin-ip.eu) targets the long-lasting enterprise collaboration, network-
ing, and interoperability by integrating services and business processes in a generic service platform [19];



Support of Semantic Interoperability in a Service-based Business Collaboration Platform 295

• NisB (FP7-256955, http://www.nisb-project.eu) is aiming at a provision of user-centric tools for hi-
erarchical interoperability of enterprises, by means of designing and applying various business model
archetypes and principles of dynamic business ecosystems.

The novelty of the SPIKE approach, in comparison to the above-mentioned projects, lays in the design
and implementation of a light-weighted ESB framework, which is strongly supported by underlying semantic
structures. The holistic and robust infrastructure, proposed in projects such as STASIS, SUPER, or COIN,
was reduced in SPIKE to a rather simple and straightforward mechanism of semantic service bus, presented
in more details in Section 3. From the technological perspective, the SPIKE solution is built on the WSMO
framework (Web Service Modelling Ontology, http://www.wsmo.org), namely on its simplified variant WSMO-
Lite [30]. The underlying semantic knowledge base was created in SPIKE following a generic and reusable
methodology [15], which transforms user requirements, provided as textual descriptions of application cases,
into a ready-to-use implementation of ontologies and business process models (cf. Section 3). In addition,
a part of the knowledge base, namely the ontologies for modelling service properties and business process
characteristics, was created by reusing ontologies of the SUPER project and other well-established semantic
structures such as Dublin Core (http://dublincore.org), SKOS [24], etc.

Similarly as in the NisB project, a set of abstract models of sub-processes were developed in the BPMO
notation [4]. WSMO Studio (http://www.wsmostudio.org) was used in SPIKE as a general toolkit for design and
implementation of all the semantic representations, including ontologies, abstract business process models, and
semantic annotations of services. Finally, the ESB runtime environment was designed to employ the semantic
knowledge base for service mediation and orchestration in workflow sequences, directly focusing on information
exchange in short-term business alliances. The results of TrustCom and STASIS projects were considered during
the design of SPIKE architecture, namely in the specification of modules for business alliance maintenance and
security [12].

1.2. SPIKE Objectives and General Approach. The SPIKE project primarily focused on the design,
implementation, and testing of a software service platform that is capable to support a transparent, easy-to-use,
and effective collaboration of organisations within an environment of virtual business alliances. At the organi-
sational level, the project objectives were defined with respect to simplify the collaboration between members
of a business alliance and to enable outsourcing of parts of the value chain to business partners (and vice versa,
offering such parts in a form of services) in short-term business alliances [15]. Special focus was given on security
and trust during all phases of alliance life cycle. The scientific and technology objectives of SPIKE targeted re-
search, development, implementation and validation of software components for semantically enhanced business
process management environment, which are capable to handle customised reference processes, ad-hoc defined
workflow structures and distributed processes built from generic process fragments.

With respect to the defined objectives, three levels of collaboration were identified and designed as opera-
tional modes for the overall platform as follows:

• Collaborative processes that enable to produce physical or intangible artefacts and are modelled by
means of complex workflow patterns;

• Sharing services, where alliance partners can offer their services in the scope of a given business pro-
cess. Offered services can be retrieved, negotiated, contracted, and finally be used (i.e. invoked and
consumed) by other alliance members according to the conditions specified in the service contract;

• Identity federation, enabling and mediating access of alliance members to the internal resources or
services of other partners.

The approach adopted in the SPIKE project, aiming at a support of all defined collaboration levels, is
schematically depicted in Figure 1.1. Three phases of the alliance life cycle, i.e., setting-up, running, and
closing down, were addressed together with proper security settings and federation of identities enabling to
access internal services or information resources of an alliance partner in a single-sign-on mode [7]. Business
organisations, presented in the top bar of the Figure 1.1, may decide to form an alliance focused on a production
of an artefact. A collaborative value chain, which determines particular steps and the main target of the short-
time alliance, is defined as a first step. The value chain is then modelled and expressed in the Conceptual Layer
in the standardised BPMN notation and can be further semantically enriched by means of the concepts from a
shared knowledge model [17]. Resources and services of participating organisations can then be mediated and
integrated according to known and formalised meaning. On the Service Layer, particular tasks in the process
model are grounded to executable services provided by the alliance partners. It allows sharing and using the



296 K. Furdik et al.

Fig. 1.1: Basic schema of the SPIKE approach for networked enterprises

services in the scope of defined processes by authorised organisations. Identities and credentials necessary for
the service invocation are distributed to the authorised users in a secure way. The alliance can then operate
according to a dynamic process model, which, if needed, may be modified and adapted during run time.

2. Architecture of the SPIKE Business Collaboration System. The described high-level function-
ality of a collaborative system for networked enterprises led to the design of the SPIKE system architecture. In
accordance with the SOA principles, the architecture was proposed as highly modular and extensible [22]. The
methodology of [28] was adopted to identify the viewpoints, perspectives, and stakeholders of the envisioned sys-
tem. User partners of the SPIKE project, responsible for particular pilot applications (cf. Section 4), provided
initial descriptions of required functionality from their perspective [31]. These descriptions have subsequently
been used as a background for the specification of system views and perspectives as well as a platform for the
validation of the system design.

2.1. Information View, Data Elements. The information view, as an initial step during architecture
design, defines a structure of data elements and information resources that are stored and manipulated by the
system. The design of data structures was accomplished by analysing the descriptions and requirements of user
partners on information and data types that may be exchanged within the business alliance environment of
the envisioned functionality [15]. The analysis resulted in a design of the main data elements, as presented in
Figure 2.1.

The Process, Workflow, and Task elements are basic building blocks for modelling an alliance of collaborative
business processes. The Task element, representing particular workflow actions, is further specified by the
parameters such as inputs, transformations, and outputs. These parameters, consumed and produced by a
task in a workflow, are represented by a set of sub-types of the generic and abstract Resource data element.
Resource defines a common set of properties inherited by all its child data elements, in particular by the resource
types such as Document, Service, Report, Message, etc. Properties of these information resources are provided
as semantic metadata defined in an ontology schema (cf. Section 3). This solution enables to combine the
standardised business process modelling with semantic descriptions created according to the Semantic Web
principles [17]. The semantic knowledge base is represented by the Ontology and Metadata elements. These



Support of Semantic Interoperability in a Service-based Business Collaboration Platform 297

Fig. 2.1: Data elements and their structural relationships

elements store and provide both the metadata schema as well as instantiated data that specify and semantically
describe the elements of other information resources. Finally, the information view contains the data elements
for user management, security, authentication, and system settings needed for configuration of the client-side
tools.

2.2. Functional View, Structure of System Components. The functional view of the architecture,
which defines particular system modules, their inner components and interactions between them, was designed
as a structure of user interfaces, data modules, and business logic of the semantic service bus [22]. Four main
functional subsystems, schematically depicted in Figure 2.2, were specified as follows:

• The SPIKE System Core (SSC), a back-end providing functions for accessing and processing all the
system data, namely the data storage, security, and maintenance of semantically enhanced business
processes, workflow sequences, and services;

• The SPIKE Portal Instance (SPI), a web-based user interface that acts as a front-end to the SSC
functionality;

• The SPIKE Administration, Monitoring and Reporting (SAMR), a subsystem that provides tools for
overall system maintenance and day-to-day operation;

• The SPIKE Service Bus (SSB), an infrastructure that handles the communication between other SPIKE
subsystems and external entities.

Each subsystem is further divided into a set of loosely coupled components, so-called managers, which
provide autonomous and elementary functionality. The components of SSB and SSC subsystems are responsible
for semantic workflow maintenance, including mediation, orchestration and execution of services in a pre-defined
business process that corresponds to the alliance value chain.

Managers integrated into the SSC provide the core functionality of the overall system and are responsible for
manipulations on the service level. The Content Manager, a very central component of the SSC, provides means
for storage, retrieval and update of all data presented in and brokered through the SPIKE infrastructure, namely
the ontologies, service registrations and descriptions, user sessions, and metadata of identity management. The
Service Manager, which implements a built-in Web Service engine, provides discovery and execution capabilities
for the services integrated into a process workflow. The Semantic Manager handles all functionality involved in
dealing with semantic information, namely the semantic search, matching, mediation, mapping, and reasoning
over semantically described data. Semantic metadata descriptions of services, sub-processes, and artefacts,
which are specified as input and/or output parameters of services, are maintained and provided by the Semantic
Manager by means of metadata mapping.



298 K. Furdik et al.

Fig. 2.2: Functional subsystems and components of the SPIKE platform

The business logic of the SSC managers is transmitted to the rest of the system by means of the SSB
functionality. SSB serves as a central communication channel that handles messaging and data exchange
between the system core, user interface, and administration parts of the SPIKE infrastructure. The Interface
Manager is the only component employed by other managers to interact with external services. It provides basic
capabilities for service usage, i.e. for connecting the services and transmitting service requests and responses
to other components of the platform. The Binding Component acts as a proxy to remote services. It makes
the services available to the service bus in a form of normalised messages, independently of the service’s actual
transport protocol and data format. The Communication Manager is an implementation of a semantically
enhanced ESB, specifically designed for dynamic service selection and mediation (cf. Section 3). The service
bus component is built on the Java Business Integration (JBI) specification JSR 208, using the Normalised
Message Router as a central messaging backbone. The Service Messages Engine provides the lifting-lowering
semantic transformations and the related business logic during the processing of external services (see also
Figure 3.3 in Section 3.2). The grounded services are then orchestrated into a process workflow, exposed to the
portal interface of SPI subsystem, and provided to the authorised alliance members.

3. Semantic Structures and Enhancements for Services and Business Processes. To support
semantic message routing, service annotation and mediation in the environment of semantically enhanced ESB,
the underlying semantic structures for the SPIKE system were built on the WSMO framework [23]. The value
chain of a business alliance is semantically represented by an abstract business process model, which is imple-
mented by the Business Process Modelling Ontology (BPMO) representation of WSMO [4]. The advantage of
this approach is that BPMO is compatible with the standard notation of BPMN and, in addition, the underlying
ontology format allows seamless and straightforward integration with other semantic elements. BPMO, as well
as sBPMN, and sBPEL ontologies [18], published as outcomes of the project SUPER [4], were adopted as basic
semantic structures for representing the elements of business processes in SPIKE.

The resource ontologies, which are capable to serve as a semantic base for annotating service inputs,
outputs, non-functional properties, and various information artefacts exchanged between services in a workflow,
were created in the format of Web Service Modelling Language (WSML, http://www.wsml.org). The developed
resource ontologies can be divided into three logical groups [15]:

• Process-related ontologies provide conceptual models for semantic description of business processes and
their elements such as Process, Task, Service, etc. Existing ontologies have been reused or new ones



Support of Semantic Interoperability in a Service-based Business Collaboration Platform 299

derived from the above-mentioned BPMO, sBPMN, and sBPEL ontologies where necessary. Moreover,
this ontology group contains the concepts enabling semantic annotation of services included in a SPIKE
collaboration process and referenced by the Task data elements. It covers the WSMO-Lite ontology
for semantic description of Web Services and a specific SPIKE service ontology that interconnects the
service-related concepts with collaboration processes by means of human tasks and available types of
online services.

• System-related ontologies semantically describe the platform environment. It includes concepts describ-
ing non-functional properties of WSMO services, SKOS classification schemes [24], concepts represent-
ing user profiles, and general concepts such as CollaborationObject, Alliance, Contract, Organisation,
Address, Person, Actor, etc.

• Domain ontologies extend the conceptual models towards particular pilot applications of the SPIKE
project (cf. Section 4). The domain ontologies, created from background materials and textual de-
scriptions provided by the SPIKE user partners [15], cover areas such as identity federation, service
contracting, authorisation and secure access to distributed legacy applications, and collaboration envi-
ronment of documentation services.

Both the developed abstract business process models and resource ontologies are publicly available at
http://www.spike-project.eu/BPmodels/ and http://www.spike-project.eu/ontologies/, respectively.

3.1. Semantic Annotation of Services and Processes. Developed semantic structures of ontologies
and abstract process models can be seen as initial steps towards an orchestrated workflow of interoperable
services. To anchor an abstract process model into real services and artefacts, its activity elements such as
WSMO Goal tasks, Web Service tasks, and manual tasks need to be grounded to a concreteWSDL representation
of executable services [10]. The semantic interoperability can then be achieved by associating the WSDL
elements with proper ontology concepts that express the meaning of inputs, outputs, and characteristics of a
service in a machine-readable way.

SPIKE adopts the specification of Semantic Annotations for WSDL and XML Schema (SA-WSDL) [11],
which is probably the best known mechanism for semantic annotation of Web Services. It defines XML attributes
for linking WSDL elements to the respective ontology concepts that may semantically specify service inputs,
outputs, and types. The advantage of the SPIKE approach is that the WSMO framework directly supports
the SA-WSDL annotation mechanism and the respective user interface is included as part of the WSMO
Studio toolkit. It thereby enables seamless integration of WSMO ontologies, BPMO models of processes, and
semantically described services. Additionally, SA-WSDL attributes can specify transformations between XML
messages and related ontology instances, enabling semantic data mediation by lifting and lowering procedures
from XML descriptions to ontologies and vice versa. This feature was employed in SPIKE for dynamic service
selection and routing as described in Section 3.2.

Web Services, and online services in general, can obtain the WSDL descriptions inherently. However, in the
case of SPIKE pilot applications, most services were of off-line type, where a human interaction was required.
For this type of services, referenced in SPIKE as ”human tasks”, the description of properties can be modelled by
means of standardised XForms format [6], while the BPEL4people extension [1] can be used to model these tasks
in the executable process. In accordance with this technology background, inputs and outputs of all services
that represent human tasks were enhanced in SPIKE pilot applications by respective SA-WSDL references to
the semantic representations of artefacts required by service inputs and/or provided on the service output.
Figure 3.1 presents sample XForms representation of input entry fields, which are required for a human task
that initiates a collaboration process. The entry fields of the form are associated with proper ontology concepts
in advance. During the workflow run time, a human actor in the process is asked to fill in the form fields with
proper values, which are then automatically linked to the respective ontology concepts.

Abstract business process models of BPMO format specify an alliance workflow, consisting of a sequence
of semantically annotated tasks. Tasks can be grounded to particular services of various types, including Web
Services, electronic web forms, or offline services represented as human tasks. In principle, such an abstract
process model, properly grounded and semantically described, can be semi-automatically transformed into
its corresponding executable BPEL form. For such a transformation, SPIKE combines the BPMO-to-sBPEL
translation mechanism [8] with the Eclipse BPEL Designer toolkit (http://www.eclipse.org/bpel/).

To process the executable workflow, a specific JBI runtime environment is created in the service bus for
each of the SPIKE collaboration processes. Orchestration of services into a complex workflow is handled by



300 K. Furdik et al.

Fig. 3.1: XForms interface of input properties for a human task

the Apache Orchestration Director Engine (ODE, http://ode.apache.org), where a customised service resolving
mechanism was implemented as an iterative selection of the best candidates for service execution, according to
semantic Quality of Service properties.

3.2. Dynamic Selection and Mediation of Services in Semantic Service Bus. The presence of
semantic annotations on all components of abstract business process models, i.e. on sub-processes, tasks,
services, and exchanged artefacts, can facilitate the transformation to the executable workflow, as well as
service interoperability, basically in two opposite modes. First, services may be linked to particular process
tasks during the design time, using the correspondence between semantic descriptions of tasks and SA-WSDL
attributes of services. This so-called ”static service allocation”, which is schematically presented on the left
side of Figure 3.2, may be useful and advantageous to overcome heterogeneity problems between communicated
services. The transformation of abstract models to executable BPEL processes is rather straightforward. The
Invoke operation of BPEL is static; the service has to be furnished with a concrete WSDL of a service instance
at the design time already. However, the role of semantic descriptions at run time is ignored or reduced to the
matching of service inputs or outputs with provided or consumed artefacts. The drawback of this approach
is that if such a statically allocated service is corrupted or not accessible for whatever reason at invocation
time, then the running workflow is interrupted and may cause a failure of the whole process. Moreover, newly
published services cannot be considered in the process model without altering and redeploying it.

The second option is so-called ”dynamic service binding” [14, 13] and its schema is depicted on the right
side of Figure 3.2. The Process Layer, which in SPIKE corresponds to the Process Manager component of
SPI (see Figure 3 in Section 2.2), handles abstract process models and the respective semantic annotations of
workflow tasks. Furthermore, this layer conducts the deployment of executable process representations to a
workflow engine, as well as the execution and monitoring of running workflow. The Mediation Layer, i.e. an
implementation of SSB, provides virtual interfaces (IF1-4 in Figure 3.2) for semantic descriptions of workflow
tasks, which can be mapped to ontology instances and used for lifting and lowering transformations of SA-WSDL
service descriptions. On the opposite side of the layer, there are binding components (BC1-4) to all available
service instances that form the pool of service candidates. As a result, the Mediation Layer mediates between
virtualised interfaces of workflow tasks and concrete instances of executable and available services. The Service
Implementation Layer consists of the executable service instances, which are registered in the SPIKE service
repository and properly contracted for usage within an alliance.

Dynamic service binding is implemented in SPIKE by means of the semantically enhanced ESB, as it is
depicted in Figure 3.3. The process of service mediation is initiated by a service requester, which can be any
stand-alone client or workflow engine. The requester sends a SOAP message containing a semantic description
of required service to the message router. SSB then acts as a communication and messaging infrastructure



Support of Semantic Interoperability in a Service-based Business Collaboration Platform 301

Fig. 3.2: Distinction between the static and dynamic service binding

and provides the JBI binding components for message sinks. The message router delivers the SA-WSDL
virtual interface of the requested service to the Message Transformer, which forwards the interface to the lifting
procedure. The virtual SA-WSDL description of the requested service contains definitions of required service
properties, which are annotated with the sawsdl:liftingSchemaMapping attributes pointing to the instances of
ontology concepts. These semantic instances are retrieved from the ontology and are used for semantic mediation
and resolving of candidate services.

Fig. 3.3: Interactions during semantic transformation of service messages

The Semantic Manager component of SSC contains run-time implementations for ontology storage, mainte-
nance, semantic mediation, validation and querying/reasoning over semantically described data on services and
messages. In combination, it provides all required capabilities of the Mediation Layer for dynamic service bind-
ing, as presented in Figure 3.3. The service matching and resolving capability is based on semantic annotations



302 K. Furdik et al.

that may be assigned to virtual service interface using the sawsdl:modelReference SA-WSDL attribute. The
annotations can be specified by concepts of the SKOS or domain ontologies. The semantic matching procedure
enables an arbitrary combination of both types of annotation. During the subsequent reasoning, the hierarchical
structure of categories and subclass/superclass relations of input/output types can be recursively expanded.

The process of semantic mediation is employed to overcome possible differences between the domain ontology
that annotates the virtual service interface and the ontology of resolved service candidates. As a first step of
the mediation, the lifting schema is used to transform the input semantic data from the virtual interface into a
set of semantic instances. If there is a difference between the ontologies annotating input and resolved services,
then the instances can be transformed from the source ontology to the target ontology by means of pre-defined
semantic axioms and transformation rules (instance-to-instance transformation). Instances are transformed
back to normalised messages using the lowering schema specified for the resolved service.

The developed solution of semantic ESB is based on the WSMO Lite framework [30]. The Goal and
Web Service objects of general WSMO, as well as its choreography and orchestration mechanisms are not
used. In-memory representation of ontology elements, together with facilities for ontology validation, parsing,
and serialisation, is handled by the wsmo4j library (http://wsmo4j.sourceforge.net). Due to performance rea-
sons, the WSML ontologies of SPIKE knowledge base were converted to the RDF format. Physical storage
of RDF ontologies, implemented as a part of the Content Manager component, uses the Sesame repository
(http://www.openrdf.org). Mapping of top WSMO Lite ontology elements into the RDF model is based on
the ORDI framework (http://ordi.sourceforge.net), which allows integrating various data sources and provides
a common RDF API for data access. Infrastructure components such as external service interfaces, runtime
environment for service selection and mediation, were built on the JBI-compliant ESB Apache ServiceMix
(http://servicemix.apache.org).

4. Prototype Evaluation on Pilot Applications. The SPIKE system was implemented as a prototype,
which is now available under the LGPL / Apache 2.0 / X11 open source license. The prototype system was tested
on pilot applications run by corporate project members in Finland and Austria. The individual application cases
(AC) of the pilots focused on particular aspects of collaboration in a business alliance and can be summarized
as follows:

• AC1: Information Hotel was dealing with scenarios in collaborative manufacturing and documenta-
tion development. This AC aimed at demonstrating the intra-enterprise collaboration on a process of
creating a complete set of documentation materials for an industrial system. SPIKE provided an envi-
ronment for maintenance of distributed documentation services by means of secure knowledge sharing
and content management. Beyond that, the overall documentation development process and its involved
actors have been represented and controlled by the SPIKE system.

• AC2: Legacy Applications, focused on the creation and management of business alliances, including
maintenance of service providers (namely, the Siemens DAMEX c©toolkit for maintenance of business
contracts), location and configuration of services, integration into a workflow, as well as tracking,
contracting, and ordering of services. A particular focus of this AC was the seamless and flexible
integration of legacy applications and services into the virtual business alliance.

• AC3: Identity Federation demonstrated the management of user identities in a networked enterprise,
namely the maintenance of access rights, credentials, roles, and resources within a collaborative envi-
ronment. It particularly considered aspects of cross-organisational identity federation and the involved
technical and organisational procedures.

The architecture and functionality of the SPIKE platform was designed as a generic solution, which is
capable to support business alliances of any domain. However, the defined ACs were taken as a framework
determining the scope and focus of the sample data for the system prototype. Namely, the semantic structures
of ontologies and abstract process models, presented in Section 3, were created specifically for the mentioned
ACs. Nevertheless, the solution of a semantically enhanced ESB, together with related mechanisms for semantic
annotation and dynamic service binding, is rather general and can be adapted to a SPIKE application in any
domain.

Design, implementation, and testing of the SPIKE system were performed in two rounds. The first phase of
pilots testing mostly focused on proof-of-concepts implementations of research ideas and resulting functionality
of particular components. The first trial phase was then accomplished in autumn 2009. This version was
built upon the Intalio BPMS Community Edition solution (http://community.intalio.com), which served as



Support of Semantic Interoperability in a Service-based Business Collaboration Platform 303

an environment for maintenance of executable processes. However, compatibility and licensing problems were
encountered during the evaluation of this approach in the first round of pilots. For that reason we decided
to substitute the Intalio environment in SPIKE by our own implementation of the Human Task Environment
(cf. Section 3.1). The resulting solution enables an integrated management of processes, services, actors, and
resources of virtual business alliances and was developed by employing the Eclipse BPEL Designer tool and
Liferay portlet environment (http://www.liferay.com). This user side tool for maintenance of business alliances,
referenced as Alliance Manager of SPI (see Figure 2.2 in Section 2.2), was functionally connected with the
semantic ESB and other inner SSB/SSC components. In addition, the security environment, developed upon
the Shibboleth framework (http://shibboleth.internet2.edu), was integrated to the SPIKE system to enable
cross-company single sign-on and federation of identities between various external online services [12]. The
second phase of SPIKE implementation was completed in winter 2010. The resulting system prototype was
tested in January and February 2011 in the second trial of pilot applications AC1-AC3. Testing results, which
are layed out in detail in [3], indicate the suitability of the overall SPIKE approach and prove the prototype
functionality for service interoperability, secure and flexible collaboration in an environment of business alliances.

In more detail, we have learned during the trial runs that technological answers alone, even if they prove
to be very well applicable, only slightly advance virtual business alliances. Additional aspects such as ”ease of
setup” and, even more important, ”ease of use” will be among the non-technical key factors for the success of
any kind of software that aims at supporting virtual business alliances. Similarly important is the consideration
of organisational and social aspects (our insights can be looked up in [3] and several other SPIKE publications).
Nevertheless, the trial results regarding the technology produced some meaningful findings. One major goal
was to investigate the maturity and possibilities of semantic technology combined with portal and service bus
architecture to resolve issues in managing technical information and technical information flow in networked
enterprise. Our results show that there are plenty of possibilities in software for collaboration platform, in
underlying technology and especially in semantic modelling of business processes. However, commercial phase
and maturity of this technology is still quite far away from the level that it could be taken into use without
extensive support and error-situation and reliability improvements. This is especially due to large number of
involved users and their low IT competence. According to our experiences, the SPIKE platform has satisfactory
potential to improve information management efficiency in networked enterprises even if final estimations are
difficult. A tentative return on investment (ROI) calculation for AC1 indicates that in the current business
process 20% cost savings could be made with 45% deployment rate in the customer base of the industry partner
for AC1.

Beyond that, the trial results show that grasping the concept and benefits resulting from semantic an-
notations is still quite difficult even for inexperienced developers, let alone regular fellow employees. It still
requires major efforts and knowledge engineers. However, if a ’semantic basis’ is created, the resulting gains are
considerable. Therefore, our approach of designing the system in a ’semantic agnostic’ manner, meaning that in
case services and processes are not semantically annotated, components can be still used (with some limitations
regarding flexibility) proved to be very convenient. This allows that services can be just gradually annotated
in the cases when needed. The same proved right for the consideration of legacy services and the integration of
human tasks. While ’real’ web services are currently still emerging in many companies, a huge amount of legacy
services and manual tasks prove their capability in day-to-day business and are therefore worth integrating in
collaboration platforms as the one presented.

5. Conclusions. The presented system prototype, designed and implemented within the European FP7
project SPIKE, provides an environment for service-based and process-oriented collaboration in virtual business
alliances. The solution aims at effective support of service interoperability, which was achieved by employing
semantically enhanced service bus that enables both static and dynamic binding of concrete executable services
to the representations of tasks in a pre-defined abstract process model. Semantic structures employed for the
solution were built upon the WSMO Lite framework [30], enhanced by customised service resolving, mediation,
and orchestration mechanism. This light-weighted approach brings more flexibility to the composition and
maintenance of applications employing ESB for intra- or inter-enterprise service-based collaboration.

The prototype of the SPIKE system was tested in application cases covering the main aspects of collab-
orative processes in business alliances, namely the collaborative manufacturing, inclusion of external legacy
applications, and identity federation. Achieved testing results proved the usability of the developed solution [3],
namely the capability to integrate various heterogeneous services in an interoperable manner. However, further



304 K. Furdik et al.

enhancements could be considered, for example, towards a more advanced support of service contracts between
the alliance partners. It can be achieved by providing a support for formal operational level and service level
agreements, as well as by adopting other standardised processes of service management and operation [29].
More information about the SPIKE system, including methodology materials, deliverables, and other project
outcomes, is available at the project web site, http://www.spike-project.eu.

Acknowledgments. The SPIKE project was co-funded by the European Commission within the contract
No. 217098. The work presented in the paper was also supported by the Slovak Grant Agency of the Ministry
of Education and Academy of Science of the Slovak Republic within the 1/0042/10 Project ”Methods for
identification, annotation, search, access and composition of services using semantic metadata in support of
selected process types”.

REFERENCES

[1] A. Agraval et al, WS-BPEL Extension for People (BPEL4People), Version 1.0, Active Endpoints Inc., Adobe Systems
Inc., BEA Systems Inc., IBM Corporation, Oracle Inc., and SAP AG., 2007.

[2] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I.

Trickovic, and S. Weerawarana, Business Process Execution Language for Web Services. Ver. 1.1, IBM developers’
library, 2003.

[3] P. Bednar et al, Deliverable 9.4: Evaluation of Trial 2 and specification for revision of the SPIKE system, Project
Deliverable, Consortium of the FP7 project SPIKE, ICT 217098, 2011.

[4] R. Belecheanu, L. Cabral, J. Domingue, W. Gaaloul, M. Hepp, A. Filipowska, M. Kaczmarek, T. Kaczmarek, J.

Nitzsche, B. Norton, C. Pedrinaci, D. Roman, M. Stollberg, and S. Stein, Deliverable 1.1: Business Process
Ontology Framework, Project Deliverable, Consortium of the FP6 project SUPER, IST 026850, 2007.

[5] D. Beneventano, N. Dahlem, S. El Haoum, A. Hahn, D. Montanari, and M. Reinelt, Ontology-driven Semantic
Mapping, in Enterprise Interoperability III, Springer London, 2008, pp. 329–341.

[6] J. M. Boyer, XForms 1.1, W3C Recommendation, 20 October 2009, [on line], [cit. July 28, 2011], available at
http://www.w3.org/TR/2009/REC-xforms-20091020/.

[7] C. Broser, C. Fritsch, O. Gmelch, Towards Information Security Management in Collaborative Networks, in Proceedings
of 2010 Workshops on Database and Expert Systems Applications, DEXA conference, Bilbao, Spain, IEEE Press, 2010,
pp. 359–363.

[8] L. Cabral, B. Norton, J. Nitzsche, T. van Lessen, Deliverable 4.6: BPMO to sBPEL Two Way Translation, Project
Deliverable, Consortium of the FP6 project SUPER, IST 026850, 2008.

[9] D. A. Chappell, Enterprise Service Bus, O’Reilly Media, Inc., Sebastopol, CA, 2004.
[10] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, Web Services Description Language (WSDL) 1.1, W3C

Note, 15 March 2001, [on line], [cit. July 28, 2011], available at http://www.w3.org/TR/wsdl/.
[11] J. Farrell, H. Lausen, Semantic Annotations for WSDL and XML Schema, W3C recommendation, 28 August 2007, [on

line], [cit. July 28, 2011], available at http://www.w3.org/TR/ sawsdl/.
[12] C. Fernandez, G. Fernandez, M. A. Ramirez, J. M. Troya, Deliverable 7.3: Implementation of Security Components for

Service Bus Sub-System, Project Deliverable, Consortium of the FP7 project SPIKE, ICT 217098, 2009.
[13] C. Fritsch, P. Bednar, G. Pernul, DS3I – A Dynamic Semantically Enhanced Service Selection Infrastructure, in Pro-

ceedings of the 12th International Conference on E-Commerce and Web Technologies, EC-Web 2011, Toulouse, France,
August/September 2011, Lecture Notes in Business Information Processing, Volume 85, Springer-Verlag Berlin Heidel-
berg, 2011, pp. 13–24.

[14] C. Fritsch, G. Pernul, Security for Dynamic Service-Oriented eCollaboration - Architectural Alternatives and Proposed
Solution, in Proceedings of the 7th International Conference on Trust, Privacy and Security in Digital Business (TrustBus
2010), Springer-Verlag Berlin Heidelberg, 2010, pp. 214–226.

[15] K. Furdik, M. Mach, T. Sabol, Towards semantic modelling of business processes for networked enterprises, in Proceedings
of the 10th International Conference on E-Commerce and Web Technologies, EC-Web 2009, Linz, Austria, September
2009, Lecture Notes in Computer Science, Volume 5692/2009, Springer-Verlag Berlin Heidelberg, 2009, pp. 96–107.

[16] P. Giangarra, J. DeMeester, Enabling Network-Centric Operations with Semantic Web Technologies, W3C submission,
April 2005, [on line], [cit. July 28, 2011], available at http://www.w3.org/2005/04/FSWS/Submissions/14/Paper.pdf.

[17] M. Hepp, F. Leymann, J. Domingue, A. Wahler, and D. Fensel, Semantic Business Process Management: A Vision
Towards Using Semantic Web Services for Business Process Management, in Proceedings of the IEEE International
Conference on e-Business Engineering (ICEBE 2005), Beijing, China, IEEE Press, 2005, pp. 535–540.

[18] M. Hepp, D. Roman, An Ontology Framework for Semantic Business Process Management, in Proceedings of the conference
Wirtschaftsinformatik 2007, Karlsruhe, Germany, 2007, pp. 423–440.

[19] S. Huber, C. Carrez, and H. Suttner, Development of Innovative Services Enhancing Interoperability in Cross-
organizational Business Processes, in Enterprise Interoperability, Lecture Notes in Business Information Processing,
Volume 76, Part 2, Springer-Verlag Berlin Heidelberg, 2011, pp. 75–88.

[20] D. Karastoyanova, B. Wetzstein, T. van Lessen, D. Wutke, J. Nitzsche, and F. Leymann, Semantic Service Bus:
Architecture and Implementation of a Next Generation Middleware, in Proceedings of the 2nd International Workshop
on Services Engineering 2007 (SEIW), ICDE Workshops, IEEE Press, 2007, pp. 347–354.

[21] D. Karastoyanova, T. van Lessen, F. Leymann, Z. Ma, J. Nitzsche, B. Wetzstein, S. Bhiri, M. Hauswirth,

and M. Zaremba, A Reference Architecture for Semantic Business Process Management Systems, in Multikonferenz



Support of Semantic Interoperability in a Service-based Business Collaboration Platform 305

Wirtschaftsinformatik 2008, Berlin, GITO-Verlag, 2008, pp. 1727–1738.
[22] M. Mach, P. Bednar, K. Furdik, Support for Forming Temporal Business Alliances as Networked Enterprises, in Pro-

ceedings of the Central European Conference on Information and Intelligent Systems (CECIIS 2009), Varazdin, Croatia,
University of Zagreb, Faculty of Organisation and Informatics, 2009, pp. 179–186.

[23] M. Mach, J. Hreno, K. Furdik, Prototype of a Platform for Business Collaboration, in Proceedings of the Central European
Conference on Information and Intelligent Systems (CECIIS 2010), Varazdin, Croatia, University of Zagreb, Faculty of
Organisation and Informatics, 2010, pp. 347–354.

[24] A. Miles, S. Bechhofer, SKOS Simple Knowledge Organization System Reference, W3C Recommendation 18, August 2009,
[on line], [cit. July 28, 2011], available at http://www.w3.org/TR/skos-reference/.

[25] Lios Geal Consultants Ltd., E-Business Interoperability and Standards: A Cross-Sector Perspective and Outlook. Special
e-Business W@tch report, Enterprise and Industry Directorate General, European Commission, 2005.

[26] M. Missikoff, S. Drissi. R. Giesecke, A. Grilo, M. Li, N. Mehandjiev, and D. Werth, Future Internet Enterprise
Systems (FInES). Research Roadmap. Final report, ver. 3.0, June 2010, European Communities, 2010.

[27] C. Pedrinaci, C. Brelage, T. van Lessen, J. Domingue, D. Karastoyanova, and F. Leymann, Semantic Business
Process Management: Scaling up the Management of Business Processes, in Proceedings of the 2nd IEEE International
Conference on Semantic Computing (ICSC 2008), Santa Clara, CA, IEEE Press, 2008, pp. 546–553.

[28] N. Rozanski, E. Woods, Software Systems Architecture: Working with Stakeholders Using Viewpoints and Perspectives,
Addison Wesley, 2005.

[29] M. Sarnovsky, K. Furdik, IT service management supported by semantic technologies, in Proceedings of the 6th IEEE
International Symposium on Applied Computational Intelligence and Informatics (SACI 2011), Timisoara, Romania,
IEEE Press, 2011, pp. 205–208.

[30] T. Vitvar, J. Kopecky, D. Fensel, WSMO-Lite: Lightweight Semantic Descriptions for Services on the Web, WSMO
Deliverable D11, Ver.0.2, DERI, 2008.

[31] S. Wiesbeck et al, Deliverable 2.2: User requirements analysis and development/test recommendations, Project Deliverable,
Consortium of the FP7 project SPIKE, ICT 217098, 2008.

Edited by: Dana Petcu and Jose Luis Vazquez-Poletti
Received: August 1, 2011
Accepted: August 31, 2011





Scalable Computing: Practice and Experience

Volume 12, Number 3, pp. 307–315. http://www.scpe.org
ISSN 1895-1767
c© 2011 SCPE

THE SEMANTIC MIDDLEWARE FOR NETWORKED EMBEDDED SYSTEMS APPLIED

IN THE INTERNET OF THINGS AND SERVICES DOMAIN

PETER KOSTELNı́K†, MARTIN SARNOVSKÝ†, AND KAROL FURDÍK†‡

Abstract. The paper presents the LinkSmart middleware platform that addresses the Internet of Things and Services approach.
The platform was designed to support the interoperability and seamless integration of various external devices, sensors, and
services into the mainstream enterprise systems. The design and development of LinkSmart goes across two integrated European
research projects, namely the FP6 IST project Hydra and the FP7 ICT project EBBITS. Modular architecture and functionality of
LinkSmart prototype, developed by combining the service-oriented architecture, peer-to-peer networking, and semantic web services
technologies, is described with focus on semantic binding of networked devices by means of underlying ontologies and knowledge-
based inference mechanisms. Extensions of the solution towards the service orchestration, complex event handling, business process
modelling and workflow processing are discussed and described on a mechanism of context-aware processing of sensor data.

Key words: semantic web services, Internet of Things and Services, ontology for services, devices and events, networked
embedded systems

AMS subject classifications. 94-04, 94B99

1. Introduction. The innovative and rapidly evolving research area of Internet of Things and Services
(IoTS) [16], [20] addresses an investigation of ways and means for seamless functional interconnection and effec-
tive, so-called intelligent, communication of various devices, services, information systems and resources towards
operational scenarios. The aim of efforts in this area is focused on a development of platforms and solutions
providing pervasive computing environment for networked embedded systems [6], which may be employed in
real-world applications in industrial domains such as manufacturing, e-Business, e-Health, etc. In the European
context, the IoTS research is supported, for example, by the CERP-IoT cluster [20], which helps to co-ordinate
the research efforts in tens of involved FP6/FP7 projects. The projects such as ASPIRE, BRIDGE, CoBIs,
CuteLoop, Hydra, and EBBITS can be explicitly mentioned as mostly related to the topic of this paper, i.e.
the IoTS-enabling middleware. A brief survey of research activities, approaches, and technology solutions in
this field will be presented in Section 1.1. The approach towards the IoTS middleware, which will be specifi-
cally discussed and presented later in this paper, was proposed and elaborated within the Hydra and EBBITS
projects, where the authors of the paper were involved as development partners.

A wide scale of technologies is employed in IoTS frameworks or applications, ranking from Radio Frequency
Identification (RFID) and sensor signals processing to computer network technologies, web services, or Service
Oriented Architectures (SOA) of information systems. However, here we will focus on the middleware layer
that enables, by means of semantic web services and related knowledge representation structures, a networking
of physical devices, sensors, or components in order to provide higher value-added (i.e., more advanced, sophis-
ticated, or intelligent) solutions to the end users. This was the objective of the FP6 integrated project Hydra
(Networked Embedded System Middleware for Heterogeneous Physical Devices in a Distributed Architecture,
http://www.hydramiddleware.eu), which started in July 2007 and finished in December 2010. Hydra aimed at
the development of a middleware for intelligent networked embedded system, which is based on service-oriented
architecture and is deployable on both new and existing networks of distributed wireless and wired devices [3].
The resulting system, which was named as the LinkSmart middleware, is described in Section 2.

Furthermore, the development continued by adapting the middleware for a broader exploitation. Directions
of extensions and enhancements were identified namely in the underlying semantic structures, where several
significant improvements were proposed - for example, a new ontological model of generated events, more ad-
vanced reasoning, inclusion of more types of devices, etc. To test these extensions, two application cases were
specified in the areas of automotive manufacturing and food traceability. A new FP7 integrated project EBBITS
(Enabling Business-Based Internet of Things and Services, http://www.ebbits-project.eu) [21] was launched in
September 2010, where the major part of the Hydra consortium decided to participate. EBBITS is coordinated
by the Fraunhofer Institute FIT (Institute for Applied Information Technology, http://www.fit.fraunhofer.de),
which formerly coordinated the Hydra project as well. EBBITS consortium includes two industrial partners that

†Technical University of Košice, Faculty of Electrical Engineering and Informatics, Letná 9, 042 00 Košice, Slovakia.
(Peter.Kostelnik@tuke.sk, Martin.Sarnovsky@tuke.sk, Karol.Furdik@tuke.sk).

‡InterSoft, a.s., Floriánska 19, 040 01 Košice, Slovakia. (Karol.Furdik@intersoft.sk).

307



308 P. Kostelnik et al.

are responsible for setting up and running pilot applications in automotive manufacturing and food production
domains. Furthermore, seven research institutes and universities are the project partners that provide research,
system design, development, and implementation work. Home institutions of authors of the paper, i.e. Tech-
nical University of Košice and InterSoft, a.s., are mostly involved in technology-related investigations of IoTS,
design of the EBBITS system architecture, as well as in the design and implementation of semantic structures
and supportive software components required for extending the LinkSmart middleware towards the advanced
service/sensor data fusion and integration of these low-level data into business process workflow sequences.

The rest of the paper is organised as follows. The next subsection provides an overview of related technologies
and research projects, which were investigated as background knowledge resources for both Hydra and EBBITS
projects. Similarities, distinctions, and advancements of the Hydra / EBBITS approach in a comparison to
the listed projects are briefly discussed. Section 2 presents the functionality and architecture of the LinkSmart
middleware. General description of the system [3, 17] is accompanied by a description of using semantic
infrastructure of LinkSmart for binding physical devices into a broader IoT network, which is demonstrated on
a simple example. The semantic model of services, which can be considered as one of key conceptual structures in
the LinkSmart infrastructure, is described in Subsection 2.2. The OWL ontology of services is presented together
with the updates that we were already designed for applying the LinkSmart middleware in the IoTS platform of
EBBITS. An overview of LinkSmart enhancements that will be accomplished in EBBITS is included in Section
3. Designed system architecture is presented together with the ontology of events, specifically developed for
the purposes of complex event processing and inclusion of semantically enriched sensor data to the respective
business processes. Section 4 summarises the adopted approach of IoTS, outlines planned pilot applications of
EBBITS, and presents planned steps of further research.

1.1. Related Technologies and Research Streams. The area of IoTS is related to several research
and application domains, which include semantic software architectures and ontologies, semantic web services,
knowledge systems, middleware platforms, smart sensor networks, as well as a variety of systems providing
features of distributed intelligence and/or content awareness for devices. A survey of enabling technologies,
SOA-based middleware solutions, and IoTS applications can be found, for example, in [1]. Authors of this
article emphasise the interoperability of interconnected devices as a central issue of IoTS, which includes “an
always higher degree of device smartness by enabling their adaptation and autonomous behaviour, while guaran-
teeing trust, privacy, and security”. The interoperability in its technical, semantic, and organisational aspects
can be achieved by proper communication and networking infrastructure, adoption of semantic technologies,
and integration of semantically annotated device events to complex workflow structures of high-level business
processes, respectively.

In the IoT/IoTS middleware systems, the communication infrastructure is typically (but not exclusively [5])
based on SOA principles and peer-to-peer (P2P) networking [13], which is enabled by technologies such as JXTA
(http://jxta.kenai.com), Java Message Service, event processing network [4], etc. To integrate the wireless sen-
sor networks in the P2P platform by means of device proxies, the Contiki platform (http://www.contiki-os.org)
can be employed to run the messages in 6LoWPAN standard (http://datatracker.ietf.org/wg/6lowpan/), which
is based on IEEE 802.15.4-2003 standard. These technologies were proposed for EBBITS to enable the oppor-
tunistic sensor and device networking, which can be considered as a step towards the technical interoperability.

The semantic interoperability is achieved by employing technologies such as ontologies and knowledge man-
agement systems that facilitate logical reasoning, clustering of sensor data to more complex events, mediation
of semantically heterogeneous data or interfaces, decision making and context awareness for networked sensors,
devices, and services. Context-aware middleware characteristics and application types were analysed in [9],
together with a benchmark of nine middleware systems that were produced mostly as outcomes of various
research projects such as Aura, CARISMA, CORTEX, SOCAM, etc. [18]. This analysis served as a starting
point for Hydra, which was focused on the development of SOA-based middleware providing a transparent
communication layer for embedded devices. Special emphasis was given on features such as the interoperable
access to data, information and knowledge across heterogeneous platforms, including web services, and support
true ambient intelligence for ubiquitous networked devices [11, 3].

In the area of semantic web and knowledge systems, EBBITS will use knowledge engineering methods and
tools to extend the Hydra ontologies and to develop advanced reusable domain models in the scope of pilot
enterprise applications. From a scale of relevant approaches, we can mention two FP6 integrated projects:

• SEKT (http://www.sekt-project.com), which developed and exploited semantic knowledge technologies



The Semantic Middleware for Networked Embedded Systems Applied in the Internet of Things and Services Domain 309

of ontologies, metadata, and knowledge discovery. In EBBITS, we plan to re-use and extend these
technologies towards the detection of useful complex features that can help in decision making process.

• DIP (http://dip.semanticweb.org), providing an infrastructure for semantic web services to e-Work and
e-Commerce, is relevant to the further development of specific middleware services in EBBITS.

Since the EBBITS platform focuses on an effective applicability in a real-word industrial environment, the
criteria such as robustness, usability, and scalability are of high importance. Based on a selection of the well-
proven RDF/OWL knowledge representation formalisms and related reasoning mechanisms [7], the BigOWLIM1

and AllegroGraph2 storage platforms for RDF triples were identified as the best candidates to provide effective
storage and access facilities for the middleware semantic data [2, 10].

Real word enterprise applications of IoTS middleware require a strong support of process workflows and
related semantic web services, which addresses the organisational aspect of interoperability. On the side of
services, it requires capabilities for discovery, composition (i.e. orchestration or choreography), deployment, and
execution of services in a pre-defined or ad-hoc created workflow [22]. The workflow sequences can be modelled
as abstract business processes, represented by the BPMN 2.0 notation (http://www.bpmn.org), which can be
transformed to the respective executable form. From several available solutions we have selected the Drools
platform (http://www.jboss.org/drools), which employs jBPM 5 toolkit for maintenance of BPMN process
models combined with business rules (cf. Section 3).

Projects and approaches in the area of IoTS middleware, which were identified as the most relevant for the
design and development of the EBBITS platform, are as follows:

• ASPIRE (http://www.fp7-aspire.eu), an FP7 project that has designed and developed a lightweight,
royalty-free, and integrated middleware platform that could be used to implement the RFID identifica-
tion part of the EBBITS system [8]. In an opposite way, EBBITS solution on distributed intelligence
and semantic knowledge infrastructure could help ASPIRE to extend the architecture.

• BRIDGE (http://www.bridge-project.eu), an FP6 project that provides a suite of RFID tools and
business cases that could be employed namely in the food traceability scenario of EBBITS pilot appli-
cation. In addition, BRIDGE tools enable handling of the Electronic Product Code standard (EPC,
http://www.epcglobalinc.org), that will be taken as one of resources to extend the Hydra device on-
tologies towards the EBBITS pilots.

• SENSEI (http://www.sensei-project.eu), an FP7 project that was aiming to create a business driven,
scalable, pluggable and open framework for heterogeneous wireless sensor and actuator networks [19].
However, the project mainly addresses the scalability issue and the definition of services interfaces,
which need to be extended in EBBITS by semantic-oriented integration capabilities and distributed
intelligence features.

Other related approaches and solutions, as well as visions and challenges for the IoTS domain, are investi-
gated, developed and provided as outcomes of projects co-operating within the CERP-IoT cluster [20], where
both Hydra and EBBITS projects are included.

2. Architecture and Functionality of the LinkSmart Middleware. The Hydra project, briefly intro-
duced in Section 1, was aimed at research, development, and validation of a middleware for networked embedded
systems that would allow a development of cost-effective, high-performance ambient intelligence applications
for heterogeneous physical devices [3]. To test the solution in a real-world environment, three pilot applications
were prepared and accomplished in domains of facility management (smart homes), healthcare, and agriculture.

2.1. Semantic Binding of Devices in LinkSmart. The LinkSmart middleware, produced as the main
outcome of the Hydra project, combines the semantic web services technology with SOA-based principles applied
on the solution. The SOA and its related standards provide interoperability at a syntactic level. However,
Hydra also aims to provide interoperability at the semantic level. One of the objectives is to extend the
syntactic interoperability to the application level in terms of semantic interoperability. This was accomplished
by combining the use of ontologies with semantic web services. In this context, Hydra introduces the Semantic
Model Driven Architecture (SeMDA) [15], which was designed to facilitate an application development and to
promote semantic interoperability for on-line services and devices of wireless or wired type [3]. The SeMDA of
Hydra includes a set of ontologies, and provides the set of tools, which can be used both in application design

1http://www.ontotext.com/owlim/
2http://www.franz.com/agraph/allegrograph/



310 P. Kostelnik et al.

time and runtime [12]. The SeMDA concept, implemented in the LinkSmart middleware, makes all devices in
a LinkSmart-based IoTS application accessible in an uniform way - as the semantic web services.

Basically, SeMDA in LinkSmart provides a mechanism for wrapping standard API interfaces of services,
sensors, and various physical devices with a defined web service extension, which is enhanced by a semantic
description of provided or generated WSDL files [6]. This process is called the Hydra-enabling of the device.
Developer can Hydra-enable a new device using so-called Device Development Kit (DDK), included into the
LinkSmart infrastructure [17]. The new device is annotated to the suitable class in the device taxonomy (e.g.
mobile device) and the basic description, such as device model name and number, manufacturer information,
energy consumption profile or device discovery information, is added. Since particular devices may have different
connection and communication capabilities, the service calls have to be transformed into web service calls. For
each service, the developer has to add a custom implementation, which includes common services as StartWS,
StopWS or GetWSEndpoint, and services related to the energy consumption such as CurrentPowerConsumption
or RemainingBattery. Each service is also annotated to the suitable service taxonomy class of LinkSmart Device
ontology. This way, the devices and their local networks are both accessible by LinkSmart and connected to the
outside world through broadband and/or wireless networks. For example, the binding of a thermometer device
to the respective semantic description in Device.owl ontology of LinkSmart is as follows:

<linksmart:binding device="http://linksmart.eu.com/

ontology/Device.owl#thermometer"/>

The LinkSmart can generate a stub of the related client and/or server code, which can be based, for example,
on an available ontology instance that semantically describes the states of the device or sensor. The proxy stub
is created according to the devices capabilities as either directly embedded on the device or using the OSGi
framework3. The device can then be accessed and controlled in the application code of a networked embedded
system using the following Java statements:

AppDeviceManager myMgr = new AppDeviceManager();

ThermoMeter.LSDeviceWS myThermometer = new ThermoMeter.LSDeviceWS();

myThermoMeter.SetLSID(myMgr.GetLSID("Off1Thermometer"));

Light.LSDeviceWS myLight = new Light.LSDeviceWS();

myLight.SetLSID(myMgr.GetHID("Off1Light"));

...

if (myThermometer.GetTemperatureC() > 25)

{

myLight.Flash(2);

myPhone.SendSMS("Too hot in the office 1,

temperature:" + myThermometer.GetTemperatureC()+ "+421329264552");

}

The meaning of the presented code, which is rather simplified for demonstration purposes, is as follows. After
initiating the Application Device Manager object (which is included in the Service Layer of Application Elements,
as it is presented in Figure 2.1), a web service client is created for the thermometer device. It is required that
the device is Hydra-enabled, so that it was properly wrapped by obligatory web service interfaces and annotated
by LinkSmart device ontology. Then the LinkSmart identifier, abbreviated as LSID, is retrieved from a concrete
physical device in our case, from the thermometer located in an office 1 (i.e. from Off1Thermometer). The
identifier is used to create an endpoint URL for the device, forwarded as input parameter to the web service
client that corresponds to the device. The same way, another web service client is created and initialised for the
light device. Once the web service client was initialised and the URL for a device was properly established, the
customised LinkSmart services of the device can be invoked and consumed. The rest of the code is obvious if
the temperature in office 1, measured continuously by the thermometer, exceeds 25 degrees, then the light will
start flashing and the cell phone will send a message.

The creation of a new Hydra-enabled device in design time introduces only basic device semantic repre-
sentation, which can be later further extended. Each device ontology instance represents the specific device
model and serves as the static information template [11]. In runtime, when new device enters in the LinkSmart

3http://www.osgi.org



The Semantic Middleware for Networked Embedded Systems Applied in the Internet of Things and Services Domain 311

application network, the best matching template is identified by the semantic discovery process, cloned and
tied to the physical device using the LSID persistent identifier. The property values of the runtime instance
can change as the device changes its state variables (e.g. measured values of thermometer or sensor). When
physical device leaves the LinkSmart network, assigned device runtime instance is removed from the ontology.

2.2. LinkSmart Architecture and Components. LinkSmart middleware is typically installed as a
node in the peer-to-peer network, which encapsulates interfaces of internally referenced devices and provides
them as semantic web services to other network nodes - LinkSmart instances. The architecture of the main
functional modules of LinkSmart is depicted in Figure 2.1.

Fig. 2.1: Structural overview of the LinkSmart middleware layers

The inner middleware elements are enclosed by the physical, operating system and the application layers
shown at the bottom and at the top of the diagram, respectively. The physical layer provides several network
connections like ZigBee, Bluetooth or WLAN. The operating system layer enables managing the physical layer
objects and provides methods for accessing the resources of network connections. The operating system layer
provides means to access and manage the physical layer objects. The application layer contains customisable user
applications that may include modules for workflow management, user interface, custom logic and configuration
details. These three layers are not a part of the LinkSmart middleware.

The middleware itself is divided into the Application Elements and Device Elements parts, representing the
close (i.e. running in a performance-wise mode, e.g. on the same machine as the resources used) and distant
(i.e. remote, with a slow access or performance) components, respectively. Each of the parts consists of the
network, service, semantic, and security layers, which contain the LinkSmart business logic, i.e. the functions
for context sensing, service requests handling, network management and synchronisation of peer nodes, access
control, etc.

The middleware functionality is supported by a structure of OWL ontologies, which provide a semantic
basis for particular business logic elements. For example, the ontology structure of the LinkSmart service model
is presented in Figure 2.2. Services, which are tied to devices, are described by the respective capabilities, input
and output parameters such as name, data type, and unit. Similar ontologies were produced for modelling
devices, network connections, and security issues [12].

3. EBBITS Extensions towards the IoTS Domain. The EBBITS project is aiming to shift the IoTS
paradigm of Hydra more towards the services that are orchestrated in complex workflow sequences, i.e. in
business processes that correspond to the real-world scenarios in industry or other application domain [21].



312 P. Kostelnik et al.

Fig. 2.2: Conceptual model of services in the LinkSmart ontology

This way, the EBBITS platform should provide a bridge between enterprise and public information systems, as
well as between human users and things in the physical world.

The EBBITS platform is targeting to support interoperable business applications with context-aware pro-
cessing of data separated in time and space, information and real-world events (addressing tags, sensors and
actuators as services), people and workflow chains (operator and maintenance crews). Optimisation of service
compositions will be supported by means of high level business rules that can be driven, for example, by energy
or cost performance criteria. The key requirement for the business rules execution is that the EBBITS platform
needs to be able to recognise and respond to physical world events. The information acquired from events, which
may come from physical world and are generated by various devices, create the basis for decision making at the
several levels of the EBBITS architecture (cf. Figure 3.1), including data fusion, situation patterns recognition,
complex event processing, analysis of historical acquired data, etc. All these requirements need to work with a
large amount of information related to the devices generating events or providing services for further processing
by event/service orchestration, decision making, or business rules. In some cases it must be possible to use this
information to analyse the historical data generated by particular events. All parts of decision making process
will be supported by enriched semantic model that will enable a flexible knowledge representation of all included
events, roles, services and processes.

Obviously, EBBITS builds on the outcomes of the Hydra project. The LinkSmart middleware system
is taken as the implementation basis, which will be extended on the functions and capabilities of semantic
business process modelling, workflow management, service choreography and orchestration, event handling and
processing of complex events generated by devices. The development will also address the service interoperability
issues and various enhancements that can be required on the security and networking maintenance.

A high-level architecture of the main functional modules proposed for EBBITS is presented in Figure 3.1.
Physical level of devices, sensors, external services or applications is constituted on the same principles as in
LinkSmart solution. It means that the devices are included into the LinkSmart application network by the
semantic binding mechanism and supported web service interfaces. Devices may generate events, which are
collected on the Physical World Adaptation Layer. After a normalisation and resolving of initial semantic



The Semantic Middleware for Networked Embedded Systems Applied in the Internet of Things and Services Domain 313

Fig. 3.1: Architecture of functional modules for the EBBITS platform

characteristics (using, for example, classification, pattern recognition, or clustering methods), the events are
propagated to the Hierarchical Event Management System (HEMS). The Sensor Data Fusion module, invoked
by HEMS, will combine low-level sensor events into more complex information structures. Semantic search,
mediation, and reasoning mechanisms, supported by applied RDF triple store framework and related reasoning
engines [10], will be employed for sensor data merging and context handling. Consequently, the data fusion
should provide information chunks that are suitable for further processing by workflow elements and business
rules of IF-THEN format, provided by the jBPM5 toolkit included into the Drools platform (see Section 1.1).

Communication and data/information transformation is expected in both directions. If the data flow goes
from events to business rules, then the execution of a pre-defined business process is driven, or at least influenced,
by generated events. In case of opposite data flow, a network of devices can be controlled and driven by business
rules specified on the upper level of EBBITS middleware.

As one of initial steps towards the extensions required on LinkSmart system for providing the functionality
proposed for EBBITS, it was necessary to update the semantic model for events, which has originally been
developed in LinkSmart on an insufficient level of details. We have designed the events ontology that should
cover all the information related to the hierarchical event handling and sensor data fusion in EBBITS, as it
is depicted in Figure 3.2. The ontology was created with respect to the SSN ontology [14]. It includes a
generic Event concept, models of event results and event stimulus, as well as the connection to the service
that triggers the event. These features should support the data fusion by, for example, merging of events
generated by devices of the same type, location, etc. The core taxonomy of events, required for hierarchical
event management, consists of two main sub-classes, which are distinguished according to the event stimulus
type, i.e., triggered by a real-world situation or continually generated in some frequency.

Further EBBITS enhancements of LinkSmart will include, among others, a semantic model for service com-
position, which will cover the service execution preconditions and post-conditions, the models for orchestration
of services into processes or grounding the services to a concrete implementation. The design of these extensions
will be most likely driven by OWL-S, WSMO, or similar semantic service ontologies.

4. Conclusions. To summarise, the Hydra and EBBITS projects present the concept of Semantic Devices
[11]. The motivation behind the concept is the fact that the services offered by physical devices are generally
designed independently of the particular applications in which the devices might be used. A semantic device,
on the other hand, represents what a particular application would like to have. The basic idea of this approach
is to hide all the underlying complexity of the mapping to, discovery of, and access to physical devices. The



314 P. Kostelnik et al.

Fig. 3.2: Conceptual model of events proposed for the EBBITS platform

programmer just uses it as a normal object in his application focusing on solving the applications problems
rather than the intrinsic of the physical devices.

The foundations of this concept were investigated in the Hydra project and resulted in the LinkSmart
middleware system, currently available under the LGPL 3.0 open source licence. The EBBITS project builds
on the Hydra outcomes and tries to extend the LinkSmart software on a fully featured support of business
processes, event handling, and workflow processing. This approach will be tested in two pilot applications,
namely:

• Automotive manufacturing, where enhanced LinkSmart middleware should help to manage the produc-
tion optimisation with special focus on reducing energy consumption;

• Food producing industry, supporting the service and resource traceability through the whole process
cycle, from the production to consumption stage.

Currently, in July 2011, the design and analysis work is completed and the specification of LinkSmart
system updates is ongoing. Technologies and related approaches were identified for components and semantic
structures that will be redesigned or newly developed within EBBITS. Specification of envisioned updates is
available and the implementation is ongoing. The first prototype of the enhanced LinkSmart system should be
available in autumn 2011.

Acknowledgments. The project Hydra was co-founded by the European Commission within the 6th
Framework Programme, contract No. IST-2005-034891. The presented work is partially funded by the European
research project EBBITS (7th Framework Programme, contract No. ICT-2009-5-257852), and by the Slovak
Grant Agency of the Ministry of Education and Academy of Science of the Slovak Republic within the 1/0042/10
Project ”Methods for identification, annotation, search, access and composition of services using semantic
metadata in support of selected process types”. We like to thank all partners in the EBBITS project for their
support.



The Semantic Middleware for Networked Embedded Systems Applied in the Internet of Things and Services Domain 315

REFERENCES

[1] L. Atzori, A. Iera, G. Morabito, The Internet of Things: A survey, in Computer Networks, The International Journal of
Computer and Telecommunications Networking, Volume 54 Issue 15, October, 2010, pp. 2787–2805.

[2] C. Bizer, A. Schultz, Berlin SPARQL Benchmark Results, Freie Universität Berlin, 2009, [on line], [cit. August 3, 2011],
available at http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/results/index.html.

[3] M. Eisenhauer, P. Rosengren, P. Antolin, HYDRA: A Development Platform for Integrating Wireless Devices and
Sensors into Ambient Intelligence Systems, in The Internet of Things, Springer, New York, 2010, pp. 367–373.

[4] O. Etzion, P. Niblett, Event Processing in Action, Manning Publications Co., Greenwich, CT, USA, 2010.
[5] C. Floerkemeier, C. Roduner, M. Lampe, RFID application development with the Accada middleware platform, in IEEE

System Journal 1 (2), 2007, pp. 82-94.
[6] K. M. Hansen, W. Zhang, G. Soares, , G.: Ontology-Enabled Generation of Embedded Web Services, in Proceedings of the

20th International Conference on Software Engineering and Knowledge Engineering, Redwood City, San Francisco Bay,
USA, 2008, pp. 345–350.

[7] J. Hreno, P. Nutakki, M. Knechtel, K. Furdik, T. Sabol, Deliverable 4.2: Knowledge representation formalism analysis,
Project Deliverable, Consortium of the FP7 project EBBITS, ICT-2009-5-257852, 2011.

[8] N. Kefalakis, N. Leontiadis, J. Soldatos, D. Donsez, Middleware Building Blocks for Architecting RFID Systems, in
Social Informatics and Telecommunications Engineering, Volume 13, Lecture Notes of the Institute for Computer Sciences,
Springer-Verlag Berlin Heidelberg, 2009, pp. 325–336.

[9] K. E. Kjaer, A Survey of Context-aware Middleware, in Proceedings of the 25th conference on IASTED International
Multi-Conference: Software Engineering, Anaheim, CA, USA, ACTA Press, 2007, pp. 148–155.

[10] M. Knechtel, J. Hreno, F. Pramudianto, M. Ahlsen, K. Furdik, Deliverable 4.1: Analysis of Semantic Stores and
Specific ebbits Use Cases, Project Deliverable, Consortium of the FP7 project EBBITS, ICT-2009-5-257852, 2011.

[11] P. Kostelnik et al, Semantic Devices for Ambient Environment Middleware, in Proceedings of EURO TrustAmi 2008,
Internet of Things and Services, Sophia-Antipolis, France, 2008.

[12] P. Kostelnik, M. Sarnovsky, J. Hreno, Ontologies in HYDRA - middleware for ambient intelligent devices, in Ambient
Intelligence Perspectives II., Vol. 5, 2009, pp. 43–46.

[13] F. M. Lardies, P. A. Rafael, J. Fernandes, W. Zhang, K. M. Hansen, P. Kool, Deploying Pervasive Web Services
over a P2P Overlay, in WETICE ’09, Proceedings of the 18th IEEE International Workshops on Enabling Technologies:
Infrastructures for Collaborative Enterprises, Washington, DC, USA, IEEE Computer Society, 2009, pp. 240–245.

[14] L. Lefort, C. Henson, K. Taylor, Incubator Report, W3C Semantic Sensor Network Incubator Group, 29 June 2011, [on
line], [cit. August 3, 2011], available at http://www.w3.org/2005/Incubator/ssn/wiki/Incubator Report.

[15] C. Pahl, Semantic model-driven architecting of service-based software systems, in Information and Software Technology,
Volume 49 Issue 8, August, 2007, pp. 838–850.

[16] G. Santucci, From Internet of Data to Internet of Things, Information Society and Media, Directoriate General, European
Commission, Brussels, 2009.

[17] M. Sarnovsky, P. Kostelnik, J. Hreno, P. Butka, Device Description in HYDRA Middleware, in Proceedings of the 2nd
Workshop on Intelligent and Knowledge oriented Technologies (WIKT 2007), Kosice, Slovakia, 2007, pp. 71–74.

[18] C. F. Sorensen, M. Wu, T. Sivaharan, G. S. Blair, P. Okanda, A. Friday, H. Duran-Limon, A context-aware middleware
for applications in mobile ad hoc environments, in Proceedings of the 2nd workshop on Middleware for pervasive and
ad-hoc computing (MPAC 2004), New York, USA, ACM Press, 2004, pp. 107–110.

[19] M. Strohbach, M. Martin, Towards a Platform for Pervasive Display Applications in Retail Environments, in Pervasive
Computing, Volume 10, Issue 2, IEEE Computer Society, 2011, pp. 19–27.

[20] H. Sundmaeker, P. Guillemin, P. Friess, S. Woelffl, Vision and Challenges for Realising the Internet of Things, CERP-
IoT cluster, Information Society and Media, Directoriate General, European Commission, Brussels, 2010.

[21] V. Vajda, K. Furdik, J. Glova, T. Sabol, The EBBITS Project: An Interoperability platform for a Real-world populated
Internet of Things domain, in Proceedings of the International Conference Znalosti (Knowledge), Technical University of
Ostrava, Czech Republic, 2011, pp. 317–320.

[22] W. Zhang, K. M. Hansen, Towards Self-managed Pervasive Middleware using OWL/SWRL ontologies, in Proceedings of
the Fifth International Workshop on Modeling and Reasoning in Context (MRC 2008), Delft, The Netherlands, 2008, pp.
1-12.

Edited by: Dana Petcu and Jose Luis Vazquez-Poletti
Received: August 1, 2011
Accepted: August 31, 2011





Scalable Computing: Practice and Experience

Volume 12, Number 3, pp. 317–336. http://www.scpe.org
ISSN 1895-1767
c© 2011 SCPE

SECURE ACCESS MECHANISM FOR CLOUD STORAGE

DANNY HARNIK, ELLIOT K. KOLODNER, SHAHAR RONEN, JULIAN SATRAN, ALEXANDRA SHULMAN-PELEG,

AND SIVAN TAL ∗

Abstract. Emerging storage cloud systems provide continuously available and highly scalable storage services to millions of
geographically distributed clients. A secure access control mechanism is a crucial prerequisite for allowing clients to entrust their
data to such cloud services. The seamlessly unlimited scale of the cloud and the new usage scenarios that accompany it pose new
challenges in the design of such access control systems.

In this paper we present a capability-based access control model and architecture appropriate for cloud storage systems that is
secure, flexible, and scalable. We introduce new functionalities such as a flexible and dynamic description of resources; an advanced
delegation mechanism and support for auditability, accountability and access confinement. The paper details the secure access
model, shows how it fits in a scalable storage cloud architecture, and analyzes its security and performance.

1. Introduction. The rapid growth in the amount of personal and organizational digital data is a major
characteristic of information systems in this decade. This growth is accompanied by increased demand for
availability, as users wish to run their software and access their data, regardless of their type and location,
from any web-enabled device at any time. Cloud computing addresses these challenges by providing virtualized
resources as an online service and by allowing them to scale dynamically. Services offered over the cloud include
applications (Software as a Service), virtual machines (Infrastructure as a Service), and data storage (Storage
as a Service). The latter service, along with the storage cloud upon which it resides, is the topic of this paper.

Storage cloud systems are required to provide continuous availability and elastic scalability [4] while serving
multiple tenants accessing their data through the Internet. The storage cloud infrastructures are comprised
of tens of geographically dispersed data centers (DCs), where each DC is comprised of many thousands of
compute and storage nodes, and should be able to efficiently serve millions of clients sharing billions of objects.
Furthermore, to achieve availability and scalability, each data object is replicated at multiple data centers across
the cloud. Each object replica should be accessible for reads and writes, and to optimize access latency and
data throughput, it is preferable that clients be directed to the replica closest to them.

1.1. Security and access control in the storage cloud. Data security risks are a key barrier to the
acceptance of cloud storage [25, 30, 43]. Many potential users are rightfully worried about moving their data to
a storage cloud, where it will be stored by an external provider on an infrastructure also used for storing other
customer’s data. Storage cloud providers must therefore implement a secure access control system in order to
reduce the risk of unauthorized access to a reasonably low level. Access control refers to managing identities,
defining access policies, and controlling access to resources in a secure manner.

Security has its costs, as the structure of very large scale storage systems incurs a trade-off between per-
formance, availability and security [23]. Balancing this trade-off is particularly challenging in the storage cloud
environment, as providers must implement a secure access control system that scales elastically and meets the
high availability requirements of the cloud as described above. Moreover, even though the consistency of the
data itself can be reduced to improve availability [41], the system must always consistently enforce access control
at all access points for all data objects.

In addition to the scale and availability requirements, today’s new web applications such as mashups,
introduce new data access practices. Namely, data is not necessarily accessed directly by its original owner
but rather through various applications, in flexible sharing scenarios and with various billing methods. These
applications put forth new functional requirements for the access control mechanisms. These include, for
example, the ability of a client to delegate a flexible subset of his access rights to anyone he or she wishes and
support for the related notion of discretionary access control (DAC) [1]. Also required is support for hierarchical
management of rights, assigning administrators privileged access to a data domain and allowing them to delegate
partial access to other principals under their control.

Traditional file-based storage systems employ a monolithic access control system. In such a system, a client
is authenticated upon logging in to a session, and is then authorized by the data server for each file access,
according to the access policies (e.g., ACLs) associated with the accessed file. This approach is insufficient
for a cloud storage system for several reasons. First, HTTP is a stateless protocol so session-based security is

∗IBM Haifa Research Lab, Haifa, Israel 31905, Email: {dannyh,kolodner,shaharr,julian satran,shulmana,sivant}@il.ibm.com

317



318 D. Harnik et al.

not always applicable; even with secure HTTP sessions, it is inefficient and sometimes impractical to associate
a session with each client. Second, performing identification, authentication, and authorization for each data
access request creates a performance overhead especially in very large scale systems with high multi-tenancy.
Furthermore, some of the new requirements, such as replication in an eventually-consistent environment, make
the update of access rights more difficult. We advocate, instead, a capability-based approach, already used in
distributed file systems (DFSs) such as Ceph [42], which seems more suitable for cloud-scale storage.

1.2. Our contributions. In this paper we propose a capability-based access control model designed to
address the emerging challenges of storage clouds. Extending previous capability-based access control models
[39, 11, 31, 23, 12] we introduce the following innovations:

• We present a model supporting fine grain and dynamic scope for access rights. We introduce a dynamic
definition of the resources via a flexible description with pattern matching on object attributes (e.g.
object name, type, or metadata). Thus, the accessible subset of resources can change as objects are
added or removed from the system.

• We enable user-to-user and user-to-application delegation, where one user can directly delegate a subset
of his access rights to a subset of resources without requiring the intervention of a system administrator
or the storage cloud. We introduce mechanisms for auditing and access confinement that can serve as
a basis for determining accountability, compliance and billing.

• We present an architecture of a data center that supports capability-based access control. It separates
authentication and authorization from the data access path, allowing non-mediated and efficient access
to data without the need to specify the accessed storage server (i.e. the same credential is valid for all
the replicas regardless of their physical location).

• We enable integration with external identity or access management components used by enterprises
and applications. This allows combining the advantages of capabilities with those of other access
control models (e.g. ACLs). This enables fulfilling the following requirements that no single access
control mechanism can satisfy alone (1) Compatibility with existing systems and APIs; (2) Centralized
monitoring of the access rights granted to all users over specific resources; (3) Achieving the advantages
of capability-based models (see Section 6).

We show that our protocol has the same security properties as other capability-based models and does not
introduce new threats. We believe that the benefits of our access control mechanism, both in scalability and in
functionality, remove obstacles preventing potential clients from adopting cloud storage.

1.3. Paper organization. Section 2 details the requirements from a storage cloud access control system,
and provides an overview of state-of-the-art storage cloud systems, highlighting their current limitations. Section
3 describes our protocol, elaborating on the new features. Section 4 evaluates the security of our proposed
method. Section 5 describes an overall architecture for a storage cloud system incorporating our protocol.
Section 6 includes a discussion and evaluation of our system in light of the requirements set forth in Section
2.1. We conclude and discuss future work in Section 7.

2. Background. In this paper we introduce a solution for new requirements regarding secure access for
cloud storage. We begin by describing the access control requirements for a secure cloud-scale storage system
and the motivation for them. We then analyze how existing systems satisfy these requirements.

2.1. Access control requirements. The challenge of access control is to selectively control who can
access and manipulate information and allow only users with the proper privilege to carry out operations. Here
we focus on functional properties of access control specific to storage in a cloud environment.

Secure chaining of services. When a client uses an application or service on the cloud, this application often
relies on another application to perform an action, which in turn may invoke yet another application and so on.
When chaining services in this way, it is important to keep track of the access rights of the client at the end
of the chain; otherwise, the system could become vulnerable to attacks like clickjacking and cross-site request
forgery that can occur when accessing the web [7]. Such attacks can be prevented by giving each client the least
authority [40] required to perform its request, and correctly maintaining the access permissions of the client
along the chain, i.e., taking care that they are neither expanded nor restricted.

User-to-user access delegation. Cloud systems aim to provide their users with the ability to easily share
resources on a very large scale. To allow a cloud system to scale arbitrarily, the role of system administrators
needs to be minimal. In particular, a user should be able to delegate access rights to other users without



Secure Access Mechanism for Cloud Storage 319

requiring the intervention of a system administrator. In addition, a user should be able to delegate access rights
(or a subset of them) to his resources (or a subset of them) to whomever they choose, including users from
other administrative domains, such as users registered to other cloud service provider, or not registered to cloud
services at all. Cross-provider delegation makes it easier to spread one’s data or services across multiple cloud
providers. While this is a recommended practice for increasing availability and resistance to DDOS attacks,
it is hard to implement using the current access control mechanisms [4]. Furthermore, a user who is granted
access rights from the administrator or from another user should be able to further delegate the rights to other
users; this is known as ”transitive delegation” [29]. Additionally, to allow flexibility in delegation, the set of
delegated resources should be defined using predefined criteria (e.g., regular expressions), in order to allow the
set of delegated resources to change dynamically as the contents change (see Section 3.1.1 on page 321). Finally,
in order to provide a secure environment that allows auditing and compliance to regulations, it should always
be possible to determine who had access to a specific resource and who is responsible for the delegation.

Scalability and high availability. Cloud services are expected to always be available, even during failures and
disasters, and to adjust themselves to significant load fluctuations within short periods of time. Distribution
of resources and data is a key instrument in meeting these goals, and should be coupled with a corresponding
distribution of the access control system. For example, a central authentication point or authorization point
would not scale well: it could create bottlenecks, be a single point of failure and become an attractive attack
target (e.g. [34]). Furthermore, any point in the cloud possessing a resource should be able to serve the request
while enforcing access control. We also add the requirement that the access control mechanism must not affect
the data access latency substantially.

2.2. Review of the state of the art. We now proceed to examine how the existing solutions satisfy these
requirements. Distributed File Systems (DFS) have been used for file sharing within organizations for many
years. However, as production DFS protocols (e.g., NFS, AFS, CIFS) were not designed for file sharing across
organizational boundaries, they fail to meet the user-to-user delegation requirements we set above [29, pp. 25-26].
While some experimental DFSs (e.g., Fileteller [19] and DisCFS [28]) and file-sharing services (WebDAVA [24])
meet some of the delegation requirements, they are based on the Public Key Infrastructure (PKI), which has
been shown to have multiple limitations for adoption in cloud-scale systems [34]. On the other hand, efforts like
OAuth [16] which do not assume PKI, require that access delegation grants pass through the service provider,
thus not meeting our user-to-user delegation requirement, and also imposing a communication overhead.

Some existing capability-based models, for example, OSD [11, 31, 23], SCARED [39], and CbCS [12], satisfy
the requirements of secure chaining of services and user-to-user delegation. However, these protocols are not
geared toward the scalability and high availability required by the cloud environment, as they were designed
for storage systems with data models (e.g. device/object) that are not adequate for the cloud.

Production storage solutions designed for cloud environments have difficulties in achieving the described
requirements. The major players in the market [3, 10, 26, 33, 37, 35] use Access Control Lists (ACLs) for
authorization and do the authorization stage in the data access path. This approach has limitations both in its
ability to easily scale and in its ability to chain services without losing track of the privileges of the principals,
thus failing to enforce the principle of least privilege (as described in [7]). In addition, none of the services we
examined enable a secure user-to-user delegation, with the ability to delegate a subset of access rights using
predefined criteria.

Following is a brief survey of the most significant cloud storage solutions with respect to their secure access
approach.

Amazon S3 [3, 2]. Amazon S3 has a simple method for granting access to other parties using ACLs, but
the other parties must be registered S3 users or groups. Objects can be made public by granting access to
the Anonymous Group but there is no way to selectively grant access to principals outside of the S3 domain.
An additional limitation is that the S3 ACLs are limited to listing 100 principals. Authentication is based on
user identifiers (unique within S3) and secret keys shared between the users and the S3 system. The requester
includes his identifier in the request and signs selected parts of the request message with a keyed hash (HMAC)
using his secret key. Since the authentication is embedded in the HTTP request, an authorized user can create
an authenticated request and pass it to another user to get an access to a specific object. Furthermore, since
the authentication information can be passed in a query string as part of the URL of the HTTP request, this
method, known as Query String Authentication (QSA), can be used by web applications interacting with web
browsers to provide seamless access delegation.



320 D. Harnik et al.

EMC Atmos Online [9]. Atmos has an authentication method similar to Amazon S3, and the same limita-
tions apply. The identity and authorization system is a little different. Atmos has a hierarchy of organizations
(called subtenants) and users within them. ACLs are maintained within subtenants with no option to grant
access permission to any principal outside the subtenant to which the object’s owner belong. User groups are
not supported, and objects cannot be made public for anonymous access.

Microsoft Windows Azure Storage [26, 27]. Azure has an authentication method similar to Amazon S3 and
EMC Atmos. Like S3, Azure allows defining objects as public to allow anonymous read access. Like Atmos,
the ACL support is minimal - there is no group support; moreover, the access policy is either public (anyone)
or private (only the owner). On top of that, Azure supports limited capability-based access. This is done using
a Shared Access Signature, which encodes a capability to perform specified operations on a specified object
(container or blob) for a specified period of time. The Shared Access Signature is signed with the owner’s secret
key. It can then be passed to any user and used in a URL’s query string to gain access.

Following is comparison of the cloud storage solutions with the requirements outlined earlier.
Secure chaining. One thing in common to all the systems described above, is that every data access request

is authenticated using an authentication string based on a secret key that the user shares with the storage
system. Existing systems do not provide a built-in mechanism that allows one service to chain the services
of another, and therefore the solution should be implemented in one of the following ways: (1) Obtaining the
secret keys or tokens that will identify their clients to the storage servers; or (2) Moving the control of the data
from the end user to the service provider, who will access the data on his behalf. Both options are limited and
inconvenient.

Access delegation. The basic delegation mechanism of most systems requires changing the ACL configuration
at the storage servers and can not allow controlled access to users who are unknown to the system. Among
registered users, transitive delegation is possible only by granting write permissions to the delegated resource’s
ACL. This has multiple security risks and delegates more rights than actually needed, thus violating the principle
of least privilege. Furthermore, there is no mechanism for controlled transitive delegation among users that are
unknown to the system. In addition, existing services limit the definition of resources for delegation to fixed
criteria (e.g., names of specific objects or buckets/containers). They do not support dynamic criteria (e.g., all
objects created after a certain date), which are important when handling billions of objects and million of users,
as is common in cloud environments.

Scalability and availability. With the exception of Azure’s Shared Access Signature, the authentication
string authenticates the identity of the user, and authorization has to be done by the storage system when
serving each request. That means that authorization is done on the data access path, which impacts the
scalability and availability of the system. Furthermore, all these systems (including Azure) authenticate the
client using its shared secret key for each access request, which adds more limitations on the scale and availability.
The design and distribution of the authentication and the authorization services need to be tightly coupled to
the distribution of the data objects.

In summary, today’s cloud solutions fall short of satisfying the requirements we define above. We proceed to
present a capability-based model that addresses these requirements without compromising the system’s security,
scalability, or availability.

3. Secure Access Protocol. In this section we present a capability-based access control mechanism for
secure access to objects in a storage cloud. Extending the OSD security model [11] and enhancing the delegation
technique of Reed et al. [39], our protocol satisfies the cloud storage requirements introducing the following key
functionalities: a dynamic capability scope, advanced delegation, auditing and access confinement mechanisms.

We assume the simple and most common cloud storage data model [3, 10], which is comprised of the following
types of resources: Namespaces, which are abstract containers providing context (such as ownership) for the
data objects; and Data objects of arbitrary size1, containing arbitrary content type. Every object belongs to a
single namespace and has a unique identifier within that namespace. Replication degree and replica placement
are determined at the namespace level. Nevertheless, the access control protocol described here is independent
of the specific data model and does not depend on these specific architectural decisions.

Capability-based access protocols involve three entities that are illustrated in Figure 3.1: clients ; a se-
curity/policy manager, which authenticates and authorizes the clients and grants the credentials; and storage
servers that enforce access control by validating the credentials. The access flow in such systems consists of

1Typically an implementation has a limit on object size, but this is not our concern here.



Secure Access Mechanism for Cloud Storage 321

Fig. 3.1: The OSD [31] security protocol. The client authenticates with the security manager and receives a
credential comprised of a capability and a capability-key (CAP KEY ). It then sends its request together with the
received capability and the validation tag (V al Tag) to the storage server, that validates the request and then performs
it.

two stages: (1) the client requests a credential from the security manager and then (2) uses it for accessing the
data on the storage servers. The enforcement point is the component in a storage server that enforces access
control.

Below we describe the capability structure and basic protocol, present the cloud-related enhancements in
detail, and then illustrate them with specific examples.

3.1. Capabilities. A capability, in the context of this work, is a data structure that encodes certain access
rights on one or more identified resources. The full details of the capability fields used in our system are
provided in the Appendix. Table 3.1 presents the capability arguments that enable the new functionalities that
we describe in the sections below.

3.1.1. Flexible and dynamic capability scope. In our model, the capabilities can provide a flexible
description of resources based on attributes such as object name, type and metadata. To allow this, the
ResourceDescriptor component in the capability can contain regular expressions and other selection criteria.
This enables efficient data access management by allowing creation of capabilities with dynamic scope describing
resources that can change over time (e.g. as new objects matching the selection criteria are added). An
interesting example is for Information Lifecycle Management (ILM): a ”housekeeping” application may receive
a capability to move, delete or compress objects that are older than a specified age, or have not been accessed
for a specified amount of time.

3.1.2. Flexible access rights. The Permissions field in the capability can specify any type of operation
which is properly defined to the security manager and the enforcement point. For example, in addition to
standard operations such as Create, Read, Update, Delete, or even UpdateMetadata, it can specify operations
exclusive to specific content types such as Compress, Resize,RotateF lip or ReduceResolution. Such operations
are introduced in some storage cloud offerings, for example, Nirvanix [32] already added methods like RotateF lip
to their API. Using our proposed protocol, the granularity of the access policy can match the functionality
supported by the storage service.

3.2. Credentials and access control flow. Below we describe the two stages of access: (1) obtaining
credentials and (2) accessing the resource.

1. Obtaining the credentials. A client sends a request for a capability to a security manager, which in turn
validates the identity of the requestor and performs an authorization process. If the request is approved,
the security manager responds with the credential comprised of the capability and the capability-key.
The capability (CAP ) denotes the public part of the credential specifying one or more resources and the
granted access rights. The capability-key (CAP KEY ) is the cryptographic hardening of a capability
with a secret key and pseudorandom function (PRF ), which can be a keyed cryptographic hash such as
HMAC-SHA1 or HMAC-SHA256. The key used for this operation, KeyNS, is shared by the security
manager and the storage server, for the addressed namespace. Thus, PRFKeyNS(CAP ) denotes the
pseudo-random function calculated with the key KeyNS over the fields defined by the capability CAP .
Since the capability-key is the secret part of the credential it should be sent to the client in encrypted
form, either as part of the protocol or by using an encrypted communication channel.
Credential = [CAP,CAP KEY ]
CAP KEY = PRFKeyNS(CAP )



322 D. Harnik et al.

Field Description

Resource −

Descriptor

Resource(s) to which the capability applies (see Section 3.1.1).

Permissions Operations allowed on the specified resource (see Section 3.1.2).

Discriminator A nonce ensuring the uniqueness of capabilities (see Appendix).

Identity Optional field (see Section 3.5).

Audit Optional field (see Section 3.6).

SecurityInfo The security method and protocol control information (see Section 3.2).

Delegatability A boolean value allowing/disallowing delegation.

PolicyAccessTag Used for revocation purposes (see [11]).

Table 3.1: Capability Structure.

Security
Method

V al Tag calculation Setting Benefits

CHID Channel identifier Secure channel (not nec-
essarily encrypted), e.g.
IPSEC, HTTPS.

Protects against replaying the same mes-
sage outside the specific channel.

MSGH Message fields (HTTP
method, URI, Date,
Content-Type and Content-
MD5)

HTTP requests over an
open channel.

Authenticates the message. Prevents
modification and replay attacks.

Table 3.2: Security methods. Summary of the security methods intended for secure and insecure channels.

2. Accessing the resource. To access the object of interest the client attaches to the Request (typically a
combination of a method and data, e.g., write and the contents of the object to be written), a credential
consisting of two parts: the capability and the validation tag (V al Tag). The validation tag is a keyed
hash that is computed with the client’s capability-key; it is used to authenticate the capability and
additional information as defined by the security method described below. The parameter used for the
token depends on the security method that is encoded in the capability’s SecurityInfo field.
Message = [Request, CAP, V al Tag]
V al Tag = PRFCAP KEY (token)
The choice of the security method depends on the guarantees of the underlying communication channel.
We consider the following two security methods to be the most suitable for a storage cloud environment–
one for a secure channel and the other for an insecure channel:
Channel identifier (CHID) This method is similar to the CAPKEY method of the OSD protocol
[31]. It is suitable for use over a protected communication channel such as IPSEC or HTTPS. In this
case the Token is taken to be the unique channel identifier of the protected communication channel.
The channel identifier should be unique to the combination of client, server, and the particular link on
which they communicate, and should be known by both end points.
Message headers (MSGH). Suitable for access via an open HTTP protocol. In this case the token
contains some of the HTTP message fields that are significant in terms of access rights. These include the
standard HTTP headers such as the HTTP method and resource URI, as well as Host, Date, Content-
Type and Content-MD5. As explained in more detail in Section 4, this method provides additional
security in an insecure network environment at the cost of having to re-compute the V al Tag for every
command. In conjunction with the Content-MD5 field, it authenticates the data in addition to the
request and capability.

Table 3.2 summarizes the two security methods and their typical use and guarantees, which are discussed
further in Section 4.

When a request message is received at the enforcement point in the storage server, it is validated by
performing the following steps:

1. Calculating the capability-key. The capability-key is computed based on the namespace key shared with



Secure Access Mechanism for Cloud Storage 323

Fig. 3.2: Delegation chaining. Access delegation among 3 different users. The security manager uses the namespace
key, KeyNS, to generate a capability, CAP1, and a capability key CAP KEY1 for the first user. Using this key the
user can create validation tags for his requests as well as generate the credentials for the second user, who in turn can
generate the credentials for the third.

the security manager and the received capability.
2. Calculating the expected validation tag. The capability-key computed in the previous step is used to

compute the expected validation tag, according to the security method specified in the capability.
3. Comparing the validation tags. The received validation tag is compared to the expected validation tag.
4. Validating the capability and request. The received capability is validated to be formatted correctly

and to match the requested operation. After the credential is validated, other required conditions
and request parameters may be checked as done normally (e.g., timestamp validation, Content-MD5
validation and so on).

3.3. User-to-user delegation. In this section we describe an advanced delegation mechanism that en-
ables a user to create (and pass to another user) a new capability that encodes a subset of the rights on a subset
of the resources encoded in an existing capability. It should be noted that delegation is an inherent feature of
capability-based systems. Since the credential encodes a capability rather than an identity, it can be delegated
to any principal. However, it is often desirable for a principal to delegate a subset of his rights to another
principal. For example, a user that has full control over a namespace may want to allow another user to access
a subset of the namespace’s objects, perhaps for read only access. We follow a technique presented by Reed et
al. [39] and adapt it to the storage cloud environment. Below we detail how the delegated credential is built
and validated. Section 3.4 further illustrates these mechanisms with specific examples.

3.3.1. Delegation mechanism. During delegation a user creates and passes to another user a new ca-
pability, that is derived from the original capability he received from the security manager. Since an important
goal of generating this new capability is the reduction of access rights, we term it a reduced capability. Having a
credential [CAP,CAP KEY ], a reduced capability credential can be created by appending a reduced capability
to the original capability, and creating a new capability-key by hashing the appended part using the original
capability-key as the key.

Formally: A delegation chain is created such that Credentiali = [CAPi, CAP KEYi] is defined as follows:

Credential1 = [CAP1, PRFKeyNS(CAP1)]
For n > 1 :
CAP KEYn = PRFCAP KEYn−1

(CAPn)
Credentialn = [(CAP1, ..., CAPn), CAP KEYn]

Notes:

• A Client cannot generate Credential1 because that requires knowledge of KeyNS.



324 D. Harnik et al.

• Generating CAP KEYn requires knowledge of CAP KEYn−1. Yet, CAP KEYn does not reveal any
useful information regarding CAP KEYn−1.

• It is crucial that all capability keys be sent over authenticated and encrypted channels.
• Our key generation technique computes CAP KEYn based only on CAPn as opposed to (CAP1, ...
, CAPn) used by Reed et al. [39]. This reduces the cryptographic overhead, while preserving the same
level of security.

This mechanism of creating new capabilities and capability-keys based on existing ones is illustrated in
Figure 3.2, which depicts the structure of the credentials in the delegation chain.

3.3.2. Reduction of access rights. When allowing user-to-user delegation it is important to ensure that
each user can only reduce his own access rights and cannot delegate access beyond his own permission. We
define one capability CAPi+1 to be a subset of another capability CAPi if and only if the value of each field in
CAPi+1 does not describe a higher privilege than the corresponding field in CAPi. For example, we require that
during delegation the new ResourceDescriptor describes a subset of the resources, and Permissions describes
a subset of the operations, and the ExpiryT ime field contains a lower or equal expiration time. Two fields are
an exception to this rule: (1) We require that the SecurityInfo of the two capabilities contain exactly the same
security method; (2) we do not compare the Discriminator fields.

3.3.3. Delegation validation. When a chained capability credential is processed at the enforcement
point it is validated by the following mechanism, which is an extension of the one described above.

1. Calculation of the chain of capability keys. First, CAP KEY1 is calculated based on CAP1 andKeyNS.
Then, each subsequent CAP KEYi is calculated from CAP KEYi−1 and CAPi as described above (see
Figure 3.2).

2. Calculation of the validation tag. The last capability-key in the chain is used to calculate the expected
validation tag.

3. Compare the validation tags. Compare the received vs. the expected tags.
4. Validation of the capability delegation chain and the request. Validate that each capability in the chain

is a proper subset of the preceding capability as defined above and that the request conforms with the
last capability. This ensures one cannot increase the access granted by a given credential.

3.4. Examples. Using the scenario illustrated in Figure 3.3, in this sub-section we describe some specific
examples that demonstrate the use of the delegation mechanism.

Let SP be a service provider using the storage cloud as its back-end to provide data services to its clients.
SP creates a namespace SP1 and receives a capability credential from a security manager that grants it full
control over SP1, as shown below:

CAPSP =

[

ResourceDescriptor ofnamespace SP1,
P ermissions = full control , ...

]

CAP KEYSP = PRFKeySP1(CAPSP )
CredentialSP = [CAPSP , CAP KEYSP ]

Delegating access to a subset of resources. Alice is a client of SP wishing to have full control over
her resource, object A, which is stored in the aforementioned namespace SP1. SP is able to act as a manager
of all access rights to SP1 without any intervention of the storage cloud security manager. In our example, SP
generates and sends Alice the following credential granting her the desired access rights2:

CAPAlice =





ResourceDescriptor of Object A
in namespace SP1,
P ermissions = full control , ...





CAP KEYAlice = PRFCAP KEYSP
(CAPAlice)

CredentialAlice =
[

(CAPSP , CAPAlice), CAP KEYAlice

]

When Alice uses this credential to access her resource, the enforcement point validates it in the following way:
it calculates the expected validation tag (via computing the capability keys CAP KEYSP and CAP KEYAlice),
compares it to the tag received, and finally it checks that CAPAlice is a subset CAPSP and that CAPAlice is a
valid capability that authorizes the requested operation.

2Essentially, the service provider acts as the security manager for his managed namespace



Secure Access Mechanism for Cloud Storage 325

Fig. 3.3: Delegation chaining. Examples of user-to-user delegation: (1) The service provider (SP) uses a storage cloud
as its back-end. SP receives credentials allowing it full control over its namespace SP1. (2) SP grants Alice a credential
allowing full control over her object A stored in the storage cloud through SP. (3) Alice grants Bob a credential allowing
read-only access to her object A. (4) SP grants Bob full control over objects having the strings ”2008” or ”2009” in their
title.

Delegating a subset of the access rights. Let Bob be a user, unknown to the storage cloud or to the
service provider, to whom Alice wishes to grant permission to read her object. Using the same mechanism as
above, Alice can delegate a subset of her rights to Bob, creating a new credential with read-only access to her
object.

CAPBob =

[

... ObjDescriptor of A,
Operations = READ ...

]

CAP KEYBob = PRFCAP KEYAlice
(CAPBob)

CredentialBob =
[

(CAPSP1, CAPAlice, CAPBob), CAP KEYBob

]

When Bob uses this credential to access the resource, the enforcement point validates it as described above,
with the added steps due to the additional capability in the chain.

Dynamic capability scope and delegation control. In another scenario, let Bob be an external finan-
cial accountant, preparing the reports for years 2008-2009. The service provider should be able to grant Bob
access to the subset of objects relevant for these years. For example, these can be described as all objects with
object name matching the regular expressions /200[89]/ or /ˆreport. + 200[89]$/ in their name. When new
objects matching the pattern are added to the system, this credential automatically provides access to them.
In addition, by setting the value of the field Delegatability to zero, the service provider may prevent Bob from
further delegating the access and generating new credentials. Figure 5.2 presents a sample access request and
a credential that can be used in this example.

3.5. Identity Testing and Access Confinement. A key design point in our capability-based access
control system is that it relieves the enforcement point from the duty of authenticating the identity of the request
sender. Removing this requirement (as well as authorization tasks) from the data access path is instrumental
in allowing high scalability and performance of the system (see further discussion in Section 6). However, at
times it may be desirable to limit the use of a capability granted to a specific user or group as an extra measure
of security, typically for more sensitive data. One consideration is that one may grant a user access to an
object, but not trust him to keep his capability credential securely without leaking it. For this purpose, we
add an optional Identity field in the capability that can be used to confine the credential and make it usable
only by the specified identity. It may contain the identity of a principal or a group. The Identity is filled in
by the delegating person and is verified by the enforcement point. Using this field allows enforcing the access
confinement property, defined by Lampson [22] (see more in Section 4).

For credentials in which the Identity field is used, the enforcement point needs to authenticate the requesting
client’s identity, and potentially to validate his membership in a group. How the client is authenticated is out
of the scope of this protocol. Two points worth mentioning: (1) the authorization is still separated from the
enforcement point; and (2) caching of relevant identity information at the enforcement point may help improve
the performance in the cases where the Identity field is used (as pointed out by Karger [20]).

3.6. Auditability and accountability. In most cases, an access control system is required to provide
mechanisms for auditing and accountability of all accesses to a resource. The technical aspects of auditability



326 D. Harnik et al.

and accountability are similar, as both are achieved by generating information that later provides proof of access
control decisions and operations. Auditing is of special concern in capability-based access control systems, since
a capability-based credential, once obtained, can be used anonymously without having to authenticate the
requester’s identity (unless the Identity field is used, see 3.5). To address this concern, an Audit field is added
to the capability. For instance, the security manager can store in this field the identity of the client to which the
capability was issued. Since the Audit field is part of the capability, it is authenticated by the capability-key
and cannot be modified. The enforcement point can log this information so it can later be used to learn which
capabilities were used and when. This can serve as a tool for billing in the cloud, as it may record who is
accountable for each access, and is especially useful in implementing today’s new pay-per-access policies.

Note that the Audit field does not provide identity information about the entity actually accessing the
resource. Rather, it provides the identity of the entity that received the credential. The entity that was granted
the credential is responsible for securing it and in most cases will be accountable for all usage of the credential.
During user-to-user delegation, the delegating client can use the Audit field to add further information on the
accountability of the delegated credentials. For example, an audit log entry might record that a resource was
accessed using a credential that was given to Alice at time T1 and was delegated from Alice to Bob at time
T2. In this case, Bob can be held accountable for the access, and Alice can be held accountable for granting
the access right to Bob. This method allows for high flexibility in billing schemes as it records the full path of
delegation and access. For example, a bill for accessing data can be split between an application providing a
service on the data and the end client providing credentials for accessing this data.

4. Security assessment. The access control scheme essentially inherits the security properties of the
OSD protocol when translated to the cloud setting. In this section we briefly overview these properties and
emphasize the new features in our protocol and their effect on security.

The basic property of an access control mechanism is naturally the assurance that an operation will only
take place when it is invoked by a user that is privileged to execute it. In our system privileges are embodied
in credentials at varying granularity (such as object, group of objects, read, write, etc.). Security includes
denying inadvertent access attempts by users as well as attempts by malicious eavesdroppers monitoring the
communication channels. It also includes preventing attacks on the network ranging from simple network errors
to attempts at modifying the content of messages, and malicious replaying of messages (replay attacks).

The security of the protocols presented in this paper hinges on two basic properties, both are guarantees of
the underlying pseudorandom function (PRF) [14]. The first is the inability of an adversary without knowledge
of a namespace key KeyNS to gain any information on a capability key CAP KEY for a capability CAP of
his choice (even when knowing keys for other capabilities). The second is the inability of an adversary that
does not possess the capability key CAP KEY for a capability CAP , to generate a request with a validation
tag that corresponds to CAP .

Therefore, a crucial assumption for our setting is that all communication of keys in the protocol is done on
a secure encrypted channel. This includes communicating keys to clients of the cloud, and communicating keys
within the cloud–between the security manger, the key manager, and the various enforcement points. This also
includes client to client communication, such as in the case of delegating capabilities.

Confinement of Corruption. We note that the architecture described in Section 5 attempts to limit the
distribution of keys to the necessary minimum. For example, an enforcement point only holds the keys that
pertain to the namespaces that it holds. This property ensures that in the case that a server or component are
compromised, the damage is confined only to the namespaces that were directly related to this component.

4.1. Security Methods. In the next paragraphs we consider all communication, other than obtaining
capabilities and keys from the security manager. We discuss the security for the two possible methods of
computing validation tags.

The CHID Method. This method, called CAPKEY in the OSD standard, assumes that clients contact
the storage cloud by initiating an anonymous IPSEC channel, an HTTPS connection or an equivalent secure
channel. The guarantee of such a channel is that its originators are the only ones able to send messages on
it. Namely, an eavesdropper cannot modify messages on the channel, replay messages on it or initiate new
messages. The channel may further encrypt all communications, but this is not mandatory for access security.
When working in such an environment, basic access control is achieved since an eavesdropper cannot use the
messages passed on a different channel because the validation tag binds the messages to the original channel.
As pointed out, generating a validation tag for a different channel, message or capability is impossible without



Secure Access Mechanism for Cloud Storage 327

knowledge of the capability key. In addition, the properties of the channel protect against the various network
attacks. Altogether, the protocol’s use of the channel ID guarantees that no useful information is gained toward
manipulation of data in other channels, even though the channel does not have to be encrypted.

The MSGH Method. This setting is very relevant for public clouds, and uses parts of the HTTP message
in order to generate the validation tag. In particular, this includes the specifics of the operation, and therefore
forms a binding between the credential and a specific command. During write operations, including a content-
MD5 field in the generation of the validation tag also guarantees that data being written to an object cannot
be modified. Essentially, this offers a guarantee that an eavesdropper intercepting the message can only use it
to repeat the exact same command, in the same time frame as specified. While this does constitute a replay
attack, it is very limited. There are two key techniques in further limiting replay attacks:
Timestamping The timestamp included in the computation of the validation tag creation, is used at the
enforcement point to reject both outdated and future operation requests. This renders messages useless for
replay outside of a small time window. However, since clock synchronization is imperfect, the policy employed
by the enforcement point is to allow operations that are reasonably close to the timestamp (this clock skew
parameter can be modified according to the quality of clock synchronization in the cloud). Note that there is a
tradeoff between more lenient and harsher timestamping policies. A harsh policy will suffer more from occasional
rejections of legal operations due to message delays and clock skews; resolving this requires regeneration of a
new command. A lenient policy increases the time window in which a replay of messages can happen.
Versioning and Nonces While timestamping reduces the possibility of a replay attack significantly, there are
techniques for further eliminating such risks. This is particularly relevant in the case of write operation as they
may allow some harmful adversarial manipulations. For example, if a delete request for an object is followed
closely by a write request, then replaying the delete request will overwrite the last operation. Such mishaps (of
out of order write operations) are not restricted only to replay attacks and are also an inherent risk in systems
with eventual consistency.3 We suggest to piggyback methods aimed at improving the consistency model (and
specifically for ensuring monotonic session write consistency) in order to further eliminate the mentioned replay
attacks. For example, by the inclusion of an object version field, write commands can be accepted only for new
versions (and deletes for old ones), thus guaranteeing monotonic write consistency. Including this information
in the computation of the validation tag ensures that replay attacks will be ruled out altogether since no write
or delete command can be repeated twice with the same version number. A similar technique is used in the
CMDRSP and ALLDATA modes in the OSD protocol. These methods are similar in spirit to the MSGH
method, only MSGH is tailored towards usage in a cloud environment. Specifically, the OSD protocol used
a sophisticated combination of nonces and timestamping in order to eliminate replay attacks. However, this
technique is less suitable for the setting of a cloud. Note that some operations, e.g., read, are less adapt to such
nonce or versioning mechanisms as they do not include inherent replication: one replica is read and the others
need not be notified about this.

Altogether, the MSGH method essentially provides authentication on an open and insecure channel, such
as a standard HTTP request, and prevents replaying the same request by a malicious party.

4.2. Delegation Security. A central feature in our protocol is the extensive delegation capability. The
main concern is the fact that in delegation, capabilities can actually be created by an external principal (external
to the cloud) rather than the security manager component. Nevertheless, this additional feature does not
compromise the overall security of the protocol. An attack on the system consists of a malicious party performing
an operation that it is not allowed to do. For this to happen it must produce a series of capabilities along with
a corresponding validation tag for its request. Moreover, this series must deviate from all such other series that
it may have obtained legally. There are basically two options for an adversary to present such a series. The
first option is to generate a validation tag without knowledge of the end capability key, which as above it is
incapable of doing. The other option is that somewhere along the chain of delegation, the adversary obtained
a capability key CAP KEYi for a capability of its choice without knowledge of the previous key in the chain
CAP KEYi−1. This too is ruled out by the properties of the underlying pseudorandom function [14].

4.3. Limiting Delegation and Access Confinement. Lampson [22] defined the problem of confinement
(we term this access confinement). In essence, it means that not only must no principal be allowed to access

3Eventual consistency is a consistency model that seems inevitable in a storage cloud where data is replicated over different
geographical regions (see survey by Voegels [41]).



328 D. Harnik et al.

Fig. 5.1: Secure access architecture. Dashed lines show the interaction between the components involved in
requests for credentials. Solid lines indicate the flow during the data operation request. There are several possible
deployment models of these components and some of them may be distributed to several physical machines.
The three access management components that are colored blue (Identity, Access and Key Managers) can be
deployed at customer premises externally to the data center.

data it was not privileged to, but also that no series of supposedly legal operations by privileged users can end in
leakage of information. Karger and Herbert [21] and Boebert [5] showed that the basic capability-based systems
are inherently incapable of solving the access confinement problem. The problem stems from the inherent
attacks allowed by delegation of credentials. Halevi et al. [15] showed how the OSD protocol can be modified
to achieve access confinement, proving this statement by rigorously defining confinement and proving it under
the universal composition framework [6]. Due to the similarity of our capability model to that of OSD [11], our
protocol achieves the same type of security when invoked with the Identity field in the capability. Recall that
when this field is used, the enforcement point is required to validate the identity of the requester and verify
that it matches the one in the field. Performing identity checking at the enforcement point achieves the desired
access confinement according to the definitions of Halevi et al. [15] (using essentially the same proof).

5. Architecture. We describe an architecture of a storage cloud consisting of multiple data centers (DCs),
supporting the presented capability model and satisfying the requirements described Section 2.1. We consider a
cloud comprised of a set of geographically dispersed DCs, collectively storing billions of objects and peta-bytes
of storage capacity4. At this scale, no component that takes part in the data access service can be realized with
a single physical entity. Every component has to be distributed and should be able to easily scale. Furthermore,
every DC stores and manages only subsets of cloud resources and there is no single component contains all the
information about all the objects in the storage cloud.

Figure 5.1 illustrates the main components of our architecture. We start this section with a description
of the components required for the general functionality of the DC performing its basic functions such as data
serving, replication and placement. Then, we describe the components of the secure access architecture and
describe their integration with the rest. Finally, we discuss the scalability issues of our secure access architecture
and how we address them.

5.1. General architecture. The Web Front End receives client requests and propagates them to the
appropriate component inside the data center, or redirects them to the right target DC as needed. It integrates
with the web server (httpd) and handles the HTTP protocol related functions. It is designed as a stateless
component. It can dynamically scale with load balancing capabilities. According to the type of the received
message, which can be either a credential or a data request, the Web Front End communicates with the Security
Manager or the Enforcement Point respectively.

The Catalog is a key-value store containing object metadata, both external (such as user metadata) and
internal (such as mapping to a storage location). It is accessed by other components and allows efficient lookup
of data attributes. For example, supporting the dynamic capability scope, it allows recognizing the objects

4Amazon S3 is reported to store more than 100 billion objects as of March 2010
[http://www.datacenterknowledge.com/archives/2010/03/09/amazon-s3-now-hosts-100-billion-objects/]



Secure Access Mechanism for Cloud Storage 329

with the attributes matching the specified selection criteria. It is designed to be distributed across the nodes
of the same DC and dynamically scale to handle the large number of objects managed by each DC. It plays an
important role in data management and replication across DCs.

The Storage Layer provides persistent storage for objects. It is responsible for allocating space and storing
object data. Our prototype implementation uses a clustered file system (within each DC but not spanning DCs)
but it can also use underlying block storage directly.

The Placement Service maintains the information regarding the placement of resources in data centers. In
accordance to our data model, it maintains the list of data centers that hold a replica for each namespace in
the storage cloud. We choose to replicate this information across all the DCs. Each data center has an always
consistent list of the replicas it is responsible for; the list of other replicas that are not in its responsibility is
eventually consistent.

The Replication Manager is responsible for the replication of object updates across the DCs. The replication
mechanism is designed to work asynchronously, providing high availability for write with eventual consistency
for read.

5.2. Secure access architecture. Here we describe the main components of the architecture related to
access control. Some of the components handle the capability-based access control model described in Figure
3.1, while the others are supporting components that handle the security functions required by the model:
authentication, authorization, and key management.

The Enforcement Point processes all data access requests. It enforces access control by validating the client
requests and credentials. It is responsible for denying a request that does not include valid credentials authorizing
it. When the CHID security method is used, the validated credentials can be cached at the Enforcement Point
to improve performance by eliminating the recalculation of capability-keys and validation tags for every request
validation.

The Security Manager is responsible for handling authorization requests and generating credentials. It
orchestrates the authentication and authorization procedures as well as credential revocation, key management
and key exchange with the Enforcement Point. Each Security Manager is responsible for a certain subset of
resources, which usually reside in the same DC. However, to allow federation of resources, a Security Manager in
one data center may serve an authorization request for the data stored in another DC. This is especially useful
when two enterprises federate their storage resources without federating the identity or the access management
components.

The Identity Manager authentication component responsible for verifying the identity of a principal request-
ing authorization, as well as group membership inquiries. Under the orchestration of the Security Manager,
multiple different Identity Managers can be deployed in the cloud. This allows enterprise customers to continue
using their own identity management servers, while other customers, like those providing Web 2.0 and Mashup
applications, may rely on the identity management offered by the cloud provider.

The Access Manager responsible for authorization and access policy management, which serves as the basis
for the decisions of the security manager that either grants or denies the requests for capabilities. Similarly to
identity managers, the cloud architecture allows deployment of multiple external access managers. Each server
may use a different model to manage the access control policies (e.g. ACLs, RBAC, etc) allowing compatibility
with existing customer infrastructures. This allows the customers to maintain their own access policies, while
relying on the cloud security manager as the credential generation authority. However, this is not mandatory
and applications may select to maintain internal access managers that will be responsible for the delegation of
credentials generated by the cloud provider.

The Key Manager is the key management component responsible for the secure generation, serving and
storage of the cryptographic keys shared between the Security Manager and the Enforcement Point. Every
namespace has a set of keys associated with it, and efficient key management is provided by storing a copy of
the namespace keys in each DC that contains a replica of that namespace.

5.3. Secure access flow. To illustrate the interactions between the components we detail the flow of the
two-stage access control model described in Section 3.2.

Obtaining the credentials. Upon receiving a credential request, the Web Front End checks with the Place-
ment Service whether the local DC has a replica of the pertinent namespace (and thus has a replica of the



330 D. Harnik et al.

authorization information for it). If it has not, the message is forwarded to another DC5. However, if such a
replica does exist in the local DC, the request is passed to the Security Manager, which in turn, communicates
with the Identity Manager and the Access Manager components to authenticate the user and authorize his
request. Using the key generated by the Key Manager, the Security Manager generates the capability and
capability-key, which are returned to the client.

Accessing the resource. When the Web Front End receives a data access request, it also calls the Placement
Service to find the replica locations for the pertinent namespace. If it resides in the local DC, the request is
passed to the Enforcement Point, that validates the credential and handles the request. It may be required to
replicate updates to other data canters, and the Replication Manager is called to perform this task. Since the
replication mechanism is out of the scope of this paper, we do not provide details for it.

5.4. Scalability of Access Control. In this sub-section we describe how we address the scalability
challenges described in Section 2.1. To ensure availability we distribute the Security Manager across all the
DCs. Each Security Manager instance serves only authorization requests pertaining to the namespaces that
reside in the respective DC.

Similarly, the Access Manager is distributed across the cloud, with an instance in each DC holding access
policy information and serving authorization requests only for namespaces that have a replica in the local DC.
This is aligned with the design of the Security Manager. It should be noted, that this distribution of access
control is mainly suitable when the Access Manager components are owned by the Cloud provider. When
integrating external access managers that are owned and managed by the customers, this distribution may be
more difficult due to the trust establishment problems.

The Identity Manager is also distributed across the cloud. However, in contrast to the access policy infor-
mation, the identity-related information cannot be partitioned as the namespaces are, because users and groups
have a global scope and do not pertain to certain namespaces. Therefore, the Identity Manager component
includes the ability to retrieve information from (or forwarding requests to) a remote Identity Manager, as well
as the ability to cache retrieved information locally for enhanced performance. The ability to integrate with
external Identity Providers is important for supporting a federated environment, although this was not part of
our prototype implementation.

The Key Manager component generates and stores highly sensitive information, which enables accessing
any resource in the cloud. It is divided into two parts: (1) A central Key Manager that generates keys and
maintains their backup and lifecycle management. This is implemented as a set of synchronized instances
set up in master-slave hierarchy with failover capability; (2) A local key management component in each DC
holds encrypted copies of the keys required to serve the namespaces residing in the DC. This local ”key vault”
component can be reused by both the Security Manager and the Enforcement Point.

It should be noted that a credential generated and provided by the Security Manager in one DC is valid
across the storage cloud and can be used to access the pertinent objects regardless of where they are replicated
and accessed. The distribution of security and access control functionality is totally transparent, similar to the
distribution of the data.

5.5. RESTful Implementation. We developed a prototype of a storage cloud comprised of data centers
with the architecture described above. One of our design principles was to support the philosophy of REST
(REpresentational State Transfer) [13], which became widely adopted due to its simplicity, scalability and easy
deployment [36, 17]. In order to implement the capability-based access control model as part of a RESTful
web service, we followed all the fundamental principles of REST, which in our set up can be formulated as
follows: (1) All resources, including objects, namespaces and credentials are referenced using a uniform resource
identifier (URI); (2) All resources are manipulated by the basic HTTP methods (GET, PUT, DELETE and
POST); and (3) All resource requests are stateless.

To support this, our system provides a RESTful API for the communication with the Security Manager,
addressing the requested credential as a resource. In essence, an authorization request is sent using an HTTP
GET request to a resource of type credential. To allow the easy integration of credentials in data access requests,
we embed them in the HTTP headers of namespace and data object requests. They are represented as JavaScript
Object Notation (JSON) strings, as illustrated in Figure 5.2, which presents an example of a user request to
access (GET) an object. It shows the capability and the validation tag that are sent in an HTTP request of a

5It may also be redirected to another DC with HTTP redirect.



Secure Access Mechanism for Cloud Storage 331

GET SP1/ report−March−2009. doc HTTP/1.1
host : www. c loud . acme . com
x−acme−c r ed e n t i a l :

[{ c a p a b i l i t y : [
{ Re s o u r c eD e s c r i p t o r :

[{ n s i d : SP1 } ,{ s e c u r i t y t a g : 1 } ]
[{ o id=˜/ˆ r epo r t .+200 [89 ] $ /} ]

{ Op e r a t i o n s : r e a d , a dd } ,
{ D i s c r i m i n a t o r : 0xFDCED0016EE87953472 } ,
{ I d e n t i t y : } , { A u d i t : B o b } ,
{ Exp i r yT ime : ”Thu , 31 Jan 2011 17 : 15 : 03 GMT} ,
{ D e l e g a t a b i l i t y : 0 } ]

{ Va l T a g : 0xAABF099916EE87953472} ]} ]

Fig. 5.2: HTTP request to GET an object from the storage cloud. A credential containing a capability and a
validation tag are added to the HTTP header. The credential value is represented as a JSON string.

client to the server. Our prototype shows that it is possible to implement the capability-based access control
model as a RESTful protocol in which all the resources (including the credentials) are controlled by components
that communicate via a standardized HTTP interface and exchange representations of these resources.

6. Discussion. In this section we begin with a general discussion of the architecture of access control
systems. Then we revisit the requirements set forth in Section 2.1, and compare the capability-based access
control architecture described in Section 5 to alternative access control mechanisms showing how it satisfies the
requirements.

6.1. Architectural Overview of Access Control. Every secure access control system has three com-
ponents:

1. Authentication, which authenticates the client entities and reliably assigns them identities.
2. Authorization, which makes authorization decisions allowing or denying access by clients to resources.
3. Enforcement component, which enforces access control on resources based on information coming from

the client, authentication and authorization.

Clearly, enforcement must be done in the data access path. However, authentication and authorization can
be done outside the data access path. Access control systems differ on where and when authentication and
authorization are done. We identify three main access control architectures and name them accordingly.

Monolithic access control. In this type of access control architecture authentication, authorization and
enforcement are all done on the data access path. The client passes authentication information, which the data
server uses to identify and authenticate the client, and authorize it to access the requested resource. Although
the authentication or the authorization components may execute separately from the enforcement point, they
are used by the data server as part of the enforcement in the data access path.

Separation of authentication. In this type of access control architecture, authentication is taken out of
the data access path. The authentication component authenticates a client and provides it with a token that
vouches for its identity. The token is validated on the data access path without the client needing to provide its
authentication information (other than the token). Authorization decisions are still made for each data access
request.

Separation of authorization. In this type of access control architecture, both authentication and autho-
rization are separated from the data access path. A client submits a request to access a resource (or a set of
resources). After it is authenticated by the authentication component, the authorization component makes the
access decision based on its authenticated identity and the access policy for the requested resources. Then the
client receives an access token that encodes a capability to access the resources. This access token is validated
by the data server as part of the enforcement in the data access path.

The capability-based access control model proposed in this paper separates both authentication and autho-
rization from the enforcement point, streamlining the data access path and allowing maximum flexibility and
scalability of access control as required in the cloud environment. We explain the benefits of capability-based
access control in the following subsection.

6.2. Advantages of capability-based access control.



332 D. Harnik et al.

Chains of services. Only the capability-based access model allows propagating the end user access rights
securely through a chain of services all the way down to the accessed resource. When resources are accessed
by services on behalf of clients, possibly through a chain of services, capability-based access control enables
propagating the end-client access token and enforcing the access control based on the authorization of the end-
client. This allows preventing attacks like clickjacking and cross-site request forgery that can occur due to the
violation of the principle of least privilege possible in the ACL-based models [7].

When authentication is not separated from the data access path, authentication information has to be
propagated through the chain of services all the way down to the enforcement point that calls the authentication
component. When authorization is not separated from the data access path, identity information has to be
propagated all the way down to the enforcement point that calls the authorization component. Propagating
authentication and identity information through the chain of services is cumbersome and reduces the overall
security. Furthermore, this information is variable in size and format, since there are numerous standard
authentication and authorization methods, each with its own definitions and models. Propagating a capability-
based access token allows a unified service protocol, while enabling different authentication and authorization
components to be plugged into the system.

User-to-user access delegation. Capability-based access control facilitates access delegation and empowers
each client entity to play the authorization role for resources to which it has access. This facilitates several use-
cases that are essential to cloud environments. Discretionary access control (DAC) is facilitated by providing
every user the ability to delegate his/her access rights to other end users, even when they do not even have a
recognized identity in the storage system. (The delegation of access can be limited and controlled as explained
in Section 3). Hierarchical authorization structure is facilitated by providing access credentials to domain and
sub-domain administrators, allowing them to delegate their access to other entities (subordinate administrator
and end-client entities) using authentication and authorization components of their choice and control.

Performance. Capability-based access control systems pay the price of authentication and authorization up-
front, and then streamline the data access path by using a capability-based access credential that is propagated
from the client entity to the enforcement point. If every access to a resource requires the client to get a
credential for the resource, the capability-based system suffers from an overhead that stems from the fact that
the client has to perform two operations serially - first get a credential and then access the resource. However,
when an access credential is reused in many resource requests, capability-based access control is beneficial and
improves the performance. The improvement is particularly significant in large scale environments in which the
enforcement point is relieved from accessing remote centralized authentication and authorization servers in the
data access path.

When a client sends a request to a data server, a credential is embedded in the request, and the validation
of the credential is done locally at the enforcement point without interactions with remote entities. Thus, the
overhead is primarily due to the cryptographic calculation required for validation. In particular, the expected
V al Tag is calculated and compared to the one sent by the client (see Section 3.2). The time overhead depends
on the pseudorandom function used, the size of the capability, c, the length of the delegation chain d, and the size
of data over which the V al Tag is computed e. Let us denote the time it takes to compute the pseudorandom
function over data of length n as PRF (n). Then the time to compute the validation tag at the server side can
be described by the following formula:

V al T ime(c, d, e) = d · PRF (c) + PRF (e)

The time increases with the number of delegations. We considered two implementations with HMAC-SHA1
and HMAC-SHA256 used to calculate both the CAP KEY and V al Tag. On an average capability size of
400 bytes, the average CAP KEY calculation time with these functions was 14µ and 23µ respectively6. The
calculation of the validation tag depends on the security method and when using the MSGH method the size
of the input message headers may be about the same size of a capability. Thus, the overall validation time of
a message with delegation chain length d can be approximated by (d + 1) · PRF (c). For example, when using
HMAC-SHA256 the validation of delegations of length 4 and 5 will take 115µ and 138µ respectively. That is
the time it takes on the server side. On the client side it only takes PRF (e) because the CAP KEY is already
computed when it receives the credential. Since the data access latencies in scalable and distributed storage
cloud is usually measured in tens of milliseconds [8], we consider the overhead of the security mechanism to be
insignificant.

6The measurements were taken on a system with a quad core 2.83 GHz processor



Secure Access Mechanism for Cloud Storage 333

High availability and scalability. Taking authentication and authorization services out of the data access
path improves the availability and scalability of the data by eliminating potential points of failure. Intuitively,
it may seem that tying authentication and authorization to the enforcement point (as in monolithic access
control) improves the availability of the system, as the client interfaces with a single service rather than two
different services in order to access the resource. However, this is not really the case when the storage system
scales horizontally. In this case the authentication and authorization components need to be (highly) available
to the enforcement point at all times. When separating the authentication and authorization from the data
access path, these components can more easily be designed for high availability independent of the data service
itself. In addition, it should be noted that once a client receives a capability-based credential, it can use it even
when the authentication and authorization components are unavailable. The credential can be validated by the
enforcement point without requiring the availability of authentication or authorization services.

Our architecture for the data service is distributed across multiple data servers, where each namespace can
be served by a set of data centers (typically a small number). From an availability perspective, we designed
the components in a way that does not reduce the availability of the data itself. Therefore, we have a security
manager component at each DC. But, as with the data itself, not all the authorization information is replicated
across all the DCs. Access policy information (i.e., governing authorization), is replicated at granularity of a
namespace and aligned with the data placement and replication. Thus, wherever a resource is stored, so is the
policy information to authorize its access. In terms of authentication, since the scale is much lower, we replicate
all the identity management information across all the DCs. Unlike the access policy data, which changes
rapidly as objects are created and deleted, the client information is much more stable and doesn’t change as
frequently. Therefore, the instance of the security manager available in each DC is capable of authenticating
any client and authorizing any access to the namespaces with a replica in that DC.

Revocation. Systems with ACLs allow manual revocation which is achieved by changing the access control
configuration. With the recent progress of ACL-based models which allow richer and more complicated de-
scription of access rights [29] this mechanism becomes more exposed to human errors. For example, consider a
situation where a user changes the ACLs configuration for delegation purposes to grant a one time access to a
resource. The granting principle can easily forget to delete this configuration to revoke the unnecessary access
rights. Unlike ACL-based systems, the proposed capability-based model has the advantage of supporting three
mechanisms for automatic and manual revocation with different level of granularity: (1) Automatic revocation
through the ”ExpiryTime” field, which determines the time period during which the capability is valid; (2)
Manual per resource revocation which is achieved by changing the field ”PolicyAccessTag” as described in [11];
(3) Per namespace revocation which is achieved by replacing the keys shared between the security manager and
enforcement point.

6.3. Overcoming the limitations of capability-based models. While capability-based access control
has multiple advantages it is also important to discuss its limitations. Below, we point out the main barriers in
the adoption of capability-based models and describe the solutions that allow to overcome the shortcomings of
capabilities while benefiting from their advantages.

Interoperability. Resource-oriented access control model, such as those based on ACLs, are the most com-
mon access control mechanism in use and pure capability based systems are implemented mostly in research
systems [29, 18]. Thus, pure capability based systems have interoperability problems, which limit their potential
adoption. Thus, we propose an architecture that allows the integration of external identity or access manage-
ment components that are already used by enterprises and applications. These can support ACL-based, RBAC
or any other access control model that fulfill the monitoring or compatibility requirements of the enterprise.
The architecture that we propose in this paper allows to utilize the access control configurations and decisions
made by these servers to grant capabilities that will provide some extra functionality such as the user-to-user
delegation of a subset of access rights that is not provided by currently existing servers. We believe that such
a hybrid system, which allows to combine the advantages of capabilities with other access control models, has
higher chances to be adopted in commercial production systems.

Per-resource auditability. Unlike ACL based systems, the capability models allow an easy tracking of all
the resources that a specific user can access. However, they do not allow an easy monitoring of all the users who
have an access to a specific resource [18]. To support this type of monitoring a capability-based system should
implement an additional layer of tracking the granted access rights. The data center architecture proposed in
this paper addresses this requirement by allowing to incorporate external access management servers, which



334 D. Harnik et al.

commonly implement the support the required monitoring capabilities either with the help of policy lists or
ACLs.

7. Conclusions and Future Work. We present an access control mechanism, which addresses the new
challenges brought forth by the scale and applications introduced in the cloud setting. Observing that most
ACL-based systems are limited in their ability to support such features, we developed a capability-based system
that addresses them. We present a general architecture of a data center in a storage cloud with integrated
security components that addresses the scalability requirements of storage cloud systems. Our architecture
allows integration of existing access control solutions toward hybrid architectures that combine the benefits of
capability-based models with other commonly used mechanisms such as ACLs or RBAC. We built a prototype
implementing each of the components.

In the future we intend to work on the integration of this architecture with existing enterprise systems
and commonly used access control standards such as SAML [38]. We hope to use our experimental system to
evaluate the overall performance of the access control mechanism on real workloads. We are encouraged by our
initial evaluation and are working to incorporate this work in a production storage cloud system. Lastly, we aim
to address the challenges raised in federation scenarios, where several enterprises need to federate their resources
across geographically distributed administrative domains, while ensuring comprehensive and transparent data
interoperability.

8. Acknowledgments. We would like to thank Guy Laden and Eran Rom for their contribution to the de-
velopment and implementation of the data center architecture presented in this paper. We would also like to thank
Dalit Naor for her contribution to the ideas presented, and Aviad Zuck for the prototype implementation performance
measurements. The research leading to these results has received funding from the European Community’s Seventh
FrameworkProgramme (FP7/2007-2013) under grant agreement n 257019.

REFERENCES

[1] Trusted computer system evaluation criteria. Technical Report DoD 5200.28-STD, Department of Defense, December 1985.
http://csrc.nist.gov/publications/history/dod85.pdf, accessed Jan 20, 2010.

[2] Amazon Simple Storage Service Developer Guide (API Version 2006-03-01). Amazon, a.
http://docs.amazonwebservices.com/AmazonS3/2006-03-01/, accessed Jan 12, 2010.

[3] Amazon Simple Storage Service (Amazon S3). Amazon, b. http://aws.amazon.com/s3/.

[4] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia. Above the clouds: A berkeley view of cloud computing. Technical Report UCB/EECS-2009-28, EECS De-
partment, University of California, Berkeley, February 2009. http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-
2009-28.html.

[5] W. Boebert. On the inability of an unmodified capability machine to enforce the *-property. In 7th DOD/NBS Computer
Security Conference, pages 291–293, 1984.

[6] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS, pages 136–145, 2001.

[7] T. Close. ACLs don’t. http://www.hpl.hp.com/techreports/2009/HPL-2009-20.pdf.

[8] G. Decandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and
W. Vogels. Dynamo: amazon’s highly available key-value store. In SOSP ’07: Proceedings of twenty-first ACM SIGOPS
symposium on Operating systems principles, pages 205–220. ACM Press, 2007.

[9] Atmos Online Programmer’s Guide. EMC, a. https://community.emc.com/docs/DOC-3481, accessed Jan 12, 2010.

[10] EMC Atmos Online Services. EMC, b. http://www.emccis.com/.

[11] M. Factor, D. Nagle, D. Naor, E. Riedel, and J. Satran. The OSD security protocol. In IEEE Security in Storage Workshop,
pages 29–39, 2005.

[12] M. Factor, D. Naor, E. Rom, J. Satran, and S. Tal. Capability based secure access control to networked storage devices.
In MSST ’07: Proceedings of the 24th IEEE Conference on Mass Storage Systems and Technologies, pages 114–128,
Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-3025-7. doi: http://dx.doi.org/10.1109/MSST.2007.6.

[13] R. T. Fielding and R. N. Taylor. Principled design of the modern web architecture. ACM Trans. Internet Technol., 2(2):
115–150, May 2002. URL http://dx.doi.org/10.1145/514183.514185.

[14] O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University Press, 2000.

[15] S. Halevi, P. Karger, and D. Naor. Enforcing confinement in distributed storage and a cryptographic model for access control.
Cryptology ePrint Archive, Report 2005/169, 2005. http://eprint.iacr.org/.

[16] E. Hammer-Lahav. The OAuth 1.0 Protocol. Internet Engineering Task Force, February 2010. http://tools.ietf.org/html/draft-
hammer-oauth-10.

[17] H. Han, S. Kim, H. Jung, H. Y. Yeom, C. Yoon, J. Park, and Y. Lee. A RESTful approach to the management of cloud
infrastructure. In Proceedings of the 2009 IEEE International Conference on Cloud Computing, CLOUD ’09, pages 139–
142, Washington, DC, USA, 2009. IEEE Computer Society. ISBN 978-0-7695-3840-2. doi: http://dx.doi.org/10.1109/
CLOUD.2009.68. URL http://dx.doi.org/10.1109/CLOUD.2009.68.



Secure Access Mechanism for Cloud Storage 335

[18] V. C. Hu, D. F. Ferraiolo, and D. R. Kuhn. Assessment of Access Control Systems. NIST IR 7316, September 2006.
csrc.nist.gov/publications/nistir/7316/NISTIR-7316.pdf.

[19] J. Ioannidis, S. Ioannidis, A. D. Keromytis, and V. Prevelakis. Fileteller: Paying and getting paid for file storage. In M. Blaze,
editor, Financial Cryptography, volume 2357 of Lecture Notes in Computer Science, pages 282–299. Springer, 2002. ISBN
3-540-00646-X.

[20] P. Karger. Improving security and performance for capability systems, ph.d. dissertation. Technical Report 149, Cambridge,
England, 1988.

[21] P. Karger and A. Herbert. An augmented capability architecture to support lattice security and traceability of access. In
IEEE Symposium on Security and Privacy, pages 2–12, 1984.

[22] B. Lampson. A note on the confinement problem. Commun. ACM, 16(10):613–615, 1973.

[23] A. W. Leung, E. L. Miller, and S. Jones. Scalable security for petascale parallel file systems. In SC ’07: Proceedings of the
2007 ACM/IEEE conference on Supercomputing, pages 1–12, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-764-3.
doi: http://doi.acm.org/10.1145/1362622.1362644.

[24] A. Levine, V. Prevelakis, J. Ioannidis, S. Ioannidis, and A. D. Keromytis. WebDAVA: An administrator-free approach to web
file-sharing. In WETICE, pages 59–64. IEEE Computer Society, 2003. ISBN 0-7695-1963-6.

[25] E. Messmer. Are security issues delaying adoption of cloud computing? Network World, April 2009.
http://www.networkworld.com/news/2009/042709-burning-security-cloud-computing.html, accessed Jan 21, 2010.

[26] Windows Azure Platform. Microsoft, a. http://www.microsoft.com/windowsazure/windowsazure/.

[27] Windows Azure Storage Services API Reference. Microsoft Corp., b. http://msdn.microsoft.com/en-
us/library/dd179355.aspx, accessed Jan 17, 2010.

[28] S. Miltchev, V. Prevelakis, S. Ioannidis, J. Ioannidis, A. D. Keromytis, and J. M. Smith. Secure and flexible global file sharing.
In USENIX Annual Technical Conference, FREENIX Track, pages 165–178. USENIX, 2003. ISBN 1-931971-11-0.

[29] S. Miltchev, J. M. Smith, V. Prevelakis, A. Keromytis, and S. Ioannidis. Decentralized access control in distributed file
systems. ACM Comput. Surv., 40(3):1–30, 2008. ISSN 0360-0300. doi: http://doi.acm.org/10.1145/1380584.1380588.

[30] R. L. Mitchel. Cloud storage triggers security worries. Computerworld, July 2009.
http://www.computerworld.com/s/article/340438/ Confidence in the Cloud, accessed Jan 21, 2010.

[31] D. Nagle, M. Factor, S. Iren, D. Naor, E. Riedel, O. Rodeh, and J. Satran. The ANSI T10 object-based storage standard and
current implementations. IBM Journal of Research and Development, 52(4-5):401–412, 2008.

[32] Nirvanix Web Services API Developer’s Guide. Nirvanix, a. http://developer.nirvanix.com/sitefiles/1000/API.html, accessed
Jan 13, 2010.

[33] Nirvanix Storage Delivery Network. Nirvanix, b. http://www.nirvanix.com/.

[34] Z. Niu, H. Jiang, K. Zhou, T. Yang, and W. Yan. Identification and authentication in large-scale storage systems. Networking,
Architecture, and Storage, International Conference on, 0:421–427, 2009.

[35] ParaScale Storage Cloud Supports Virtual File System. ParaScale. http://www.parascale.com/index.php/products/data-
access-security.

[36] C. Pautasso, O. Zimmermann, and F. Leymann. Restful web services vs. ”big”’ web services: making the right architectural
decision. In Proceeding of the 17th international conference on World Wide Web, WWW ’08, pages 805–814, New
York, NY, USA, 2008. ACM. ISBN 978-1-60558-085-2. doi: http://doi.acm.org/10.1145/1367497.1367606. URL http:

//doi.acm.org/10.1145/1367497.1367606.

[37] The Rackspace Cloud: Cloud Files. Rackspace. http://www.rackspacecloud.com/cloud hosting products/files/.

[38] N. Ragouzis, J. Hughes, R. Philpott, E. Maler, P. Madsen, and T. Scavo. Security Assertion Markup
Language (SAML) V2.0 Technical Overview. OASIS Committee Draft, March 2008. http://www.oasis-
open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf.

[39] B. C. Reed, E. G. Chron, R. C. Burns, and D. D. Long. Authenticating network-attached storage. IEEE Micro, 20:49–57,
2000. ISSN 0272-1732. doi: http://doi.ieeecomputersociety.org/10.1109/40.820053.

[40] J. H. Saltzer and M. D. Schroeder. The protection of information in computer systems. In Proc. IEEE, 63(9):1278–1308,
1975. http://web.mit.edu/Saltzer/www/publications/protection.

[41] W. Vogels. Eventually consistent. Queue, 6(6):14–19, 2008. ISSN 1542-7730.

[42] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn. Ceph: A scalable, high-performance distributed file
system. In OSDI, pages 307–320. USENIX Association, 2006.

[43] T. Wilson. Security is chief obstacle to cloud computing adoption, study says. DarkReading: Security, November 2009.
http://www.darkreading.com/securityservices/security/perimeter/ showArticle.jhtml?articleID=221901195, accessed Jan
21, 2010.



336 D. Harnik et al.

9. Appendix. Below are the full details of the capability arguments used in our system.

CAP =









ResourceDescriptor, Operations,

Discriminator, Identity, Audit,

ExpiryT ime, SecurityInfo, Delegatability,

DerivedFrom









ResourceDescriptor =





NamespaceIdentifier, ObjectIdentifier

ResourceType, ResourceCreationT ime,

SecurityTag





• ResourceDescriptor - defines the resources to which the capability applies. In our data model, this construct
consists of the following fields:
(1) NamespaceIdentifier - a unique identifier that describes the namespace resource; (2) ObjectIdentifier - an
identifier, uniques within the namespace, that describes the object resource or resources; (3) ResourceType - the
type of the resource to which the capability applies. For example, this field can be ’namespace’, in a capability
allowing to add objects to a namespaces. (4) ResourceCreationT ime - specifies the resource creation time,
preventing the situation where a resource is deleted and a another resource with the same name is created; (5)
SecurityTag - is a security tag, which is used for revocation. In order to revoke the capabilities of a certain
resource, the security manager increases the security tag and notifies the enforcement point. The enforcement
point checks the security tag and considers all the capabilities with an old tag as invalid.

• Operations - describes the operations allowed to the client possessing the credential on the described resource.
It can describe any type of operation, which is properly defined to the security manager and the enforcement
point. For example, in addition to standard operations such is read, write and execute it can describe new
operations like zip or reduce resolution.

• Discriminator - is a unique nonce which allows distinguishing between different capabilities even when they
allow similar access rights. To ensure uniqueness even when generated by different security managers, discrim-
inators can consists of such parameters as timestamp and IP address.

• Identity - optional field containing the identity of a principle or a group allowed to use the capability. When
this field is empty the capability can be used by anyone who posses it (see Section 3.5).

• Audit - optional field containing the client or application information required for auditing (see Section 3.6).

• ExpiryT ime - the capability expiration time.

• DerivedFrom - prior capabilities used for delegation chaining (see the example below).

• Delegatibility - setting this field to zero or one, prevents or allows the user-to-user delegation respectively.

• SecurityInfo - identifies the security method and the calculation of the message validation tag as detailed in
the next section.

Edited by: Dana Petcu and Jose Luis Vazquez-Poletti
Received: August 1, 2011
Accepted: August 31, 2011



Scalable Computing: Practice and Experience

Volume 12, Number 3, pp. 337–350. http://www.scpe.org
ISSN 1895-1767
c© 2011 SCPE

A VIRTUALIZATION-BASED APPROACH TO DEPENDABLE SERVICE COMPUTING

CIPRIAN DOBRE∗, FLORIN POP†, VALENTIN CRISTEA‡, AND OVIDIU-MARIAN ACHIM§

Abstract. Dependability represents a critical requirement for modern distributed systems. Today new requirements emerged.
Among them reliability, safety, availability, security and maintainability are needed by more and more modern distributed service
computing architectures. In this paper we present an approach to ensuring dependability in distributed infrastructures using
virtualization for fault-tolerance, augmented with advanced security models. The proposed solution is part of a hierarchical
architectural model that allows a unitary and aggregate approach to dependability requirements while preserving scalability of
large scale distributed systems. In this context we propose dependability solutions based on the use of virtualization and modern
security models, combined together to automatically protect services and applications belonging to the distributed system. We also
present evaluation results for several scenarios, involving applications and services with different characteristics.

Key words: virtualization, dependability, large scale distributed systems

AMS subject classifications. 15A15, 15A09, 15A23

1. Introduction. Dependability represents a critical requirement for modern distributed systems. Both
in the academic and industrial environments there is an increasing interest in large scale distributed systems
(LSDS), which currently represent the preferred instruments for developing a wide range of new applications.
While until recently the research in the distributed systems domain has mainly targeted the development of
functional infrastructures, today researchers understand that many applications, especially commercial ones,
have complementary necessities that the ”traditional” distributed systems do not satisfy. Together with the
extension of the application domains, new requirements have emerged for LSDS. Among these requirements,
reliability, safety, availability, security and maintainability are needed by more and more modern distributed
applications.

In systems composed of many resources the probability of a fault occurring is higher than in traditional
infrastructures. When failures do occur, the system should limit their effects and possible even initiate a
recovery procedure as soon as possible. Dependability, therefore, depends on the possibility to detect failures,
and successfully recover from them. By failures we mean both hardware and software, permanent or transient,
but also failures to execute operations as well as security breaches in the LSDS. Thus dependability also includes
the use of adequate security models, policies, and technologies to detect and limit the effect of possible entities
not obeying well-established rules.

The main contributions of this paper are: (1) a solution designed to detect application- or service- specific
failures occurring in different parts of the system, (2) a virtualization-based solution designed to facilitate fault
recovery by freezing services running in good states and which further uses these virtual images for future state
recovery or automatic migration of entire file systems, or sets of processes, for increased LSDS redundancy, and
(3) a Mandatory Access Control (MAC) security layer designed to encapsulate services in layers with highly
well-protected security access control rules. Used together, these contributions can increase dependability in
case of traditional service-based LSDS. We propose a virtualization approach to ensuring dependability by
using checkpoint strategies and protection domains using virtual hosts, coupled with a proactive replication
strategy necessary to maintain consistent states of the system in case of failures. The solution is part of the
DEPSYS dependability architecture ( [1]). It assumes that on top of a typical operating system the services run
in specialized virtual environments. Such virtual environments are saved and, in case of failures, moved and re-
executed on another workstation in the distributed system. The re-execution also uses appropriate consistency
algorithms.

The virtual environments running on top of the operating systems and hosting the services running inside

∗Computer Science Department, Faculty of Automatic Controls and Computers, University POLITEHNICA of Bucharest,
Romania(ciprian.dobre@cs.pub.ro principal author).

†Computer Science Department, Faculty of Automatic Controls and Computers, University POLITEHNICA of Bucharest,
Romania(florin.pop@cs.pub.ro corresponding author).

‡Computer Science Department, Faculty of Automatic Controls and Computers, University POLITEHNICA of Bucharest,
Romania(valentin.cristea@cs.pub.ro).

§Computer Science Department, Faculty of Automatic Controls and Computers, University POLITEHNICA of Bucharest,
Romania(ovidiu.achim@cs.pub.ro).

337



338 C. Dobre et al.

the distributed system form a separate layer. It allows better fault tolerance, by separating faults in different
containers, or replication of virtual sandboxes to multiple nodes. It also allows quick integration with ad-
vanced security policies, a second requirement for dependability. We present examples of complementing the
virtualization approach with security policies directly at the level of the operating system.

The rest of this paper is structured as follows. Section 2 presents related work. Section 3 presents the
architectural design on which the dependability layer is based. In Section 4 we present the virtualization-based
approach. Section 5 presents solutions designed to secure services and virtual containers, using modern security
models, in large scale distributed systems. Section 6 presents experimental results. In Section 7 we conclude
and present future work.

2. Related work. Fault tolerance includes detection and recovery. Fault detection in LSDS was ap-
proached in [2] through an adaptive system. The detection of faults is achieved by monitoring the system and
dynamically adapting the detection thresholds to the runtime environment behavior. The prediction of the next
threshold uses a Gaussian distribution and the last known timeout samples. The solution has several limita-
tions. It cannot differentiate between high response times that are due to the transient increase of the load in
the communication layer and those due to service failures, so that both are interpreted as service failures. We
solve these problems and propose a solution which adapts to both the failures in the infrastructures, but also to
the different requirements imposed by applications (for example, real-time application require a higher response
time, instead of failure detection accuracy).

For failure recovery virtualization has lately enjoyed a great surge of interest. Still, with few exceptions,
current solutions in this space have been largely ad-hoc. Authors of [21] analyze methods of leveraging virtual-
ization for addressing system dependability issues. Their analysis, based on combinatorial modeling, show that
unless certain conditions (e.g., regarding the reliability of the hypervisor and the number of virtual machines)
are met, virtualization could in fact decrease the reliability of a single physical node. In fact, motivated by this
observation, the authors propose a reliable Xen virtual machine monitor (VMM) architecture, called R-Xen. It
consists of a hypervisor core and a privileged virtual machine called Dom0. Dom0, being much bulkier than
the hypervisor core, is the weak link for Xen reliability. We extend such results and present a solution which
considers replication inside the virtual machines sets of virtual containers, each one hosting sets of services.
Thus, we protect the services as replicated containers, and the containers as part of replicated virtual machines.
The virtual machine monitoring architecture is completely shielded inside the VM, thus our solution solves the
problem of weak links regarding reliability.

An alternative solution proposed in [3] groups several server nodes into a set that appears virtually to clients
as a single node. Upon receiving a request from a client, a node forwards the request to the nearest neighbor
that offers the service. The service discovery is performed using an amended version of anycast routing scheme
by using the properties of the Mobile IPv6 protocol. The disadvantage of this solution is that it works only on
nodes running the XtreemOS operating system. Also, the system assumes the clients support the Mobile IPv6
protocol. The solution concentrates on the mechanisms to detect a working service from a set of replicated
services. However, it does not include mechanisms to recover a request when a service fails. We present a more
generic failure recovery mechanism that masks the replication of virtual nodes (combined with a container-based
solution we previously demonstrated in [1]), works with a wide range of transport protocols, detects failures
with higher accuracy, and takes recovery decisions that are adequate to be used with various SOA middleware.

A solution to handle fault tolerance in Grid systems is presented in [4]. The paper describes a resource
failure detector, together with a fault manager, that guarantees that tasks submitted are completely executed
using the available resources. The solution uses the Intra-cluster and Intra-grid load balancing model [5]. It
assumes a Grid architecture that is mapped on a tree structure, where several fault managers collect failure
information from fault detectors running on lower level nodes. The idea is similar to the one used in DIGS [6],
which aims to increase fault tolerance of web services using the model of a fault-tolerant container. A container
is a logical set consisting of several service instances. All requests to these services are mediated by specialized
entry points. This is used to enforce access policies, and to increase fault tolerance of service accesses. The
security is therefore approached at the level of the container, much like in our case. For fault-tolerance each
container manages a set of replicated service instances. The containers can be configured with various fault
tolerance policies. For example, an equivalent service instance is invoked when another one fails, or multiple
equivalent instances are invoked with the same request and a voting mechanism is applied. However, the
proposed solution uses one proxy for each service. The client accesses the service through a proxy, not directly,



A Virtualization-based Approach to Dependable Service Computing 339

so that the use of the Proxy server is not transparent to the user. To access the service container customers must
know the URI of the Proxy service. In addition, the replicated business services invoked by the proxy are not
necessarily deployed in the same container as the proxy service, which claims for the use of the URIs of replicas
for invocations. The solution proposed in our paper eliminates these disadvantages. Each container is also
protected against unauthorized accesses through a dedicated MAC security layer, designed with well-protected
security access control rules.

3. An architectural model for dependability in large scale distributed systems. The proposed
dependability approach is part of the architectural model that we proposed in [1]. The general approach to
ensuring fault tolerance in LSDS consists of an extensible architecture that integrates services designed to handle
a wide-range of failures, both hardware and software. These services can detect, react, and confine problems in
order to minimize damages. By learning and predicting algorithms they are able to increase the survivability of
the distributed system. They include services designed to reschedule jobs when resources on which they execute
fail, services capable to replicate their behavior in order to increase resilience, services designed to monitor and
detect problems, etc. The proposed architecture is also based on a minimal set of functionalities, absolutely
necessary to ensure the fault tolerance capability of distributed systems.

Fig. 3.1: The dependability architecture for LSDS.

An abstract model of the components making up the architecture at the middleware layer of the distributed
system is presented in Figure 3.1. These components are designed to ensure fault tolerance between different
hosts composing the system. At the bottom of this architecture is the core of the system, designed to orchestrate



340 C. Dobre et al.

the functionalities provided by the other components. Its role is to integrate and provide a fault tolerant
execution environment for several other components.

The architecture also includes mechanisms for ensuring resilience based on replicating components of the
system, such as the ones responsible for communication, storage and computation. It also considers combining
the replication mechanisms with solutions to ensure survivability of the system in the presence of major faults.
The solution to develop an architecture in which the system survive by adapting in the presence of fault
arise naturally by explicitly acknowledge the impossibility to include a complete solution to ensure reliability
considering the resulting resources and technologies. Because of this we adopted a strategy based on using
replication only for the most basic core functionality of the system. We use replication in the form of fault-
tolerant containers; the fault-tolerant containers can easily manage a set of replicated services, an approach
presented in the next Sections.

4. An accrual failure detection service. Failure detection is an essential service of any fault tolerant
distributed application that needs to react in the presence of failures. The detection of a failed process is difficult
because of the unpredictability of the end-to-end communication delays. To solve the agreement problem of
distinguishing between a failed process and a very slow one, various authors proposed the use of local failure
detectors ( [16], [17]). These are modules attached to the monitored processes and which gather data about
their current status.

A failure detector (FD) combines two important functions: monitoring and interpretation. This distinction
is most clear in case of accrual protocols. The family of accrual failure detectors consists in error detection
processes that associate, to each of the monitored processes, a suspicion value. Previous proposed failure
detectors are poorly adapted to very conservative failure detection because of their vulnerability to message
loss. In practice message losses tend to be strongly correlated (i.e., losses tend to occur in bursts).

Fig. 4.1: The layers of the failure detection system.

We propose the use of an FD service that improves previously proposed solutions with several capabilities:
(1) a scalable communication infrastructure used between remote failure detection processes, (2) the use of a
proposed estimation function based on sampling previous responses and a formula for the computation of the
suspicion level of a process being failed which more accurately reflect the dynamic nature of LSDS, (3) the
addition of gossip-like protocols for failure detection which leads to the elimination of wrong suspicions because
of the varying network traffic conditions, and (4) the capability of providing the failure detection function as a
service to various distributed applications.

The proposed failure detector is based on the results previously presented in [18]. Several important
results were further demonstrated in [19]. The service provides the detection capabilities of a distributed
system composed of several monitoring and detection processes. The failure detection processes run inside the
distributed environment, each being responsible for the monitoring of a subset of other processes or applications.
The system is composed of four layers (see Figure 4.1).

The Communication layer handles a scalable, fault tolerant and dynamic communication infrastructure for
the upper-layers. The failure detection processes are grouped in clusters. A cluster contains detectors that are
geographically close, and also experience small communication delays. The failure detectors monitor only other
processes inside the same cluster. The communication involves both heartbeat messages and gossip updates.
The clustering minimizes the time needed to send messages between failure detection processes.



A Virtualization-based Approach to Dependable Service Computing 341

Each cluster is under the management of a cluster coordinator process. This process is responsible for the
management of the local failure detection processes, as well as for intra-cluster and inter-cluster communication
management. The coordinator handles the cluster management for example when processes enter or exit the
system. Inside each cluster there are several failure detection processes, capable of exchanging messages between
each others to identify possible failures. At cluster level the coordinator acts as a communication gateway.
The clusters are interconnected through these gateways. The approach forms a hierarchical interconnecting
communication infrastructure. Such an approach ensures scalability because the failure detectors communicate
only with the processes inside the same cluster, and all intra-cluster communication is channeled through
dedicated network links.

Within the second layer, Monitoring (see Figure 4.1), each detection process is responsible with the moni-
toring and logging of the data. Each FD process is responsible for monitoring several other FD processes from
the same cluster. Periodically, each monitored process must issue a heartbeat message announcing it is alive.
Periodically, every Tmonitor seconds, each FD process scans the list of monitored processes. It sends a heartbeat
message to the each of the remote monitoring processes. Based on the receive heartbeat message, FD process
updates the corresponding suspicion level.

It is difficult to determine the nature of a failure that affects a process. In an unstable network, with frequent
message losses or high process failure rates, any detection algorithm is almost useless, because the processes
cannot distinguish between permanent and transient failures. The third layer of the architecture attempts
to solve this drawback by employing an approach based on gossiping. The role of gossiping is to reduce the
number of false negative (wrong suspicions) and false positive (processes are considered to be running correctly
even though they have failed) failure decisions. For this, each FD process periodically exchanges local failure
detection information with other FD processes within the same cluster.

At this layer, we propose using a component responsible with the interpretation of monitored data (see
Figure 4.1). The component analyses and further processes the monitored data. The data processing involves
the use of a function for the estimation of the next heartbeat message (adaptive threshold), as well as a function
for the computation of the probability that a remote process experienced failure (see Figure 4.2).

We call the probability value a suspicion level, as it represents the suspicion associated with the possible
failure of a remote process. The suspicion level represents the degree of confidence in the failure of a certain
process. While in case of accrual detection the suspicion level increased on a continuous scale without an upper
bound, in this case the suspicion level takes values in the [0, 1] interval so that a zero value corresponds to an
operational process, and the probability of failure increases while the value approaches 1. Each failure detector
maintains a local suspicion level value slqp(t) for every monitored remote process.

The computation of the suspicion level is based on the sampling of past heartbeat arrival times. The arrival
times of heartbeat messages are continuously sampled and used to estimate the time when the next heartbeat is
expected to arrive. The estimation function uses a modified version of the exponential moving average (EMA)
function called KAMA (Kaufman’s adaptive moving average) ( [19]). This function ensures a more accurate
prediction of the arrival time for the next heartbeat message using a trend of recent timestamps. The predicted
value is further used to compute the suspicion level of the failure in case of each remote process. The suspicion
value increases from 0 to 1. In case of a heartbeat H in the beginning, while H is not yet expected, the
current suspicion level is 0. As time passes and H does not arrive, the suspicion increases to 1, this value being
associated with the certainty in that H is lost. The suspicion value slqp(t) is computed as:

slqp(t) =
t− 1

t+ 1
, where t =

tnow
tpred

(4.1)

The proposed function returns values in the [0, 1] interval. It has a relatively quick evolution in the [0, 0.8]
interval and a slow one in the [0.8, 1] interval. The function leads to a high probability of failure recognition in
a reasonable amount of time, aspect previously demonstrated in [19].

The last layer of the FD system is represented by the interface with the applications. The failure detector
is composed of several distributed processes. The failure detection capability is provided to application in
the form of a Web service. This allows for standardized methods to access and communicate with the failure
detectors, with advantages such as interoperability, flexible integration in various technologies, etc. The service
provides operations such as the registration for specific failure detection events (a notification mechanism), and
the interrogation for failure suspicion values.



342 C. Dobre et al.

Fig. 4.2: Information flow within the failure detector.

5. A virtualization-based approach to dependability. The failure detector previously presented is
complemented with a recovery solution that uses virtualization. The approach consists in the use of several
type I virtual images (hosted directly on the computer hardware) running the same services [23]. These are
native virtual images that are smaller than an entire operating system snapshot (unlike VMWare images, our
implementation uses OpenVZ images which host only subsets of processes - an aspect crucial for communications
costs involved by migration and similar operations). Such a virtual server hosts a small set of processes. These
processes are generally the web containers hosting the services of the upper-layer LSDS middleware. Therefore,
at this layer, we are interested in protecting the processes rather than the services themselves. A solution to
protect the services themselves from LSDS-specific failures was also previously demonstrated in [14].

Fig. 5.1: The architecture of the system as composed by virtual environments.

At this layer the virtual environment is developed with support for both OpenVZ and LXC virtual en-



A Virtualization-based Approach to Dependable Service Computing 343

Fig. 5.2: The algorithm run by the coordinator.

procedure coordinator {

send VOTE_REQUEST to all nodes

log SEND VOTE REQUEST

if timeout OR receive wrong answer {

send GLOBAL_ABORT to all nodes

call ESTABLISH_CONNECTION_STATUS

}

if all sent VOTE_COMMIT {

send GLOBAL_COMMIT to all nodes

}

}

Fig. 5.3: The algorithm run by the client.

procedure client {

wait for VOTE_REQUEST

receive VOTE_REQUEST

log VOTE REQUEST

send VOTE_COMMIT

log VOTE COMMIT

start timer

wait GLOBAL_COMMIT or GLOBAL_ABORT

if timer expired {

/* Clientul lost GLOBAL_COMMIT or GLOBAL_ABORT */

call ESTABLISH_NEIGHBOUR_STATE

} else if received GLOBAL_COMMIT {

initialize checkpointing

} else if received GLOBAL_ABORT {

continue

}

}

vironments, and it is reinforced with security models assured by technologies such as SMACK or SELinux.
The virtualization layer includes, therefore, several virtual servers (VPS) hosting services belonging to the dis-
tributed system (see Figure 5.1). OpenVZ ( [7]) uses a type I hypervisor (running native on top of the physical
machine). Multiple OpenVZ environments can share the same operating system’s kernel. The overhead is lower
than in alternative virtualization approaches such as Xen or VMware. LXC (Linux Containers) is a Linux na-
tive approach similar to OpenVZ. Except for creating the virtual environment in which services runs separately,
fault tolerance is achieved using checkpointing.

There are two types of VPS nodes. A first type of node assumes the role of activity coordinator. So
inside such nodes special processes (called coordinators) implement the detection algorithm (which monitors
the processes running inside the virtual servers), as well as manage specific recovery actions. A coordinator is
responsible with checkpointing, restoring and load balancing of virtual images. The coordinator can initiate a
migration process of virtual images working with the hypervisor, and using the secured processes (such as ssh)
on the remote workstation.

The other virtual nodes host the services belonging to the distributed system. They are under the control
of the coordinator, which can detect and initiate repairing actions using the last known working snapshot of
the virtual server. The virtual servers are also protected by various security policies.

For consistency, the implementation uses a modified coordinated checkpointing algorithm based on a Two-



344 C. Dobre et al.

Phase Commit protocol. The coordinator acts as mediator and initiator of the algorithm (see Listing 5.2). It
starts by sending a VOTE REQUEST to all nodes. If the coordinator receives from all clients a VOTE COMMIT
than a consistent global checkpointing is possible and, thus, it further sends a GLOBAL COMMIT message. If
any of the slave nodes is not responding, or it simply sends VOTE COMMIT, then the coordinator responds
with GLOBAL ABORT. After sending a GLOBAL ABORT message, the coordinator tries to determine what
happened to the nodes that did not respond. Depending on the answer, it can decide whether or to further
keep the node in the list. The algorithm is presented in Listing 5.2. For fault tolerance, the coordinator itself
is replicated (as a VPS node). When it fails, another coordinator can initiate a recovery action consisting of a
retry to restore the failed node using a checkpoint image and synchronizing the differences.

When a slave node receives a VOTE REQUEST message it responds with VOTE COMMIT and starts
an internal timer. If it receives GLOBAL COMMIT before the timer expires, the node simply starts its check-
pointing action. If the timer expires and the node does not receive GLOBAL COMMIT, then it sends to all
other nodes a GLOBAL ABORT. The algorithm is presented in Listing 5.3.

State restoring is similar to the distributed checkpointing approach. Again, a coordinator initiates the
restore and if all nodes agree the system is restored to a consistent state.

For load balancing the coordinator monitors the load of the clients. When the load exceeds a predefined
threshold the coordinator migrates VPS nodes on other station. The migration process is done without inter-
rupting the connection with the node. The same principle is applied for fault tolerance. When the coordinator
detects failures inside a VPS in uses the last saved checkpoint to initiate a recovery procedure and spawn new
VPS nodes. These new nodes take over the faulty ones, and are initiated for failure tolerance on different
adjacent nodes.

In our experiments we managed to automatically correct full-stop failures (i.e., complete shutdown of a
node inside LSDS, or the lost of network connectivity) (see [14]). This is possible because the coordinator can
recover a VPS, possibly on a completely different host inside LSDS, starting from a snapshot saved on the hard
drive. The approach can also lead to further research towards the automatic corrections of transient failures.
The virtualization can lead to diversity, which in turn means we can run the same VPS possible under different
hosts. Or gossiping algorithms can be used to mediate between possible outcomes of operations.

The costs involved with the use of virtualization for fault tolerance was considered a problem by previous
authors ( [20]). For each service a XEN- or VMWare-based solution requires several virtual images (each one
containing its own operating system, memory occupied by the processes, stacks, file systems, etc.) cloned inside
a Cloud. This increases the expenses at the benefit of fault tolerance. Our solution does not rely on the cloning
of an entire virtual machine for fault tolerance. In our case the virtual image can host several VPSs, so that
if one fails another one can take its place. For full fault tolerance (to protect also the operating system for
example) one needs to deploy two virtual machines inside the Cloud. But they are used for entire collections
of services, each possibly running inside its own VPS. Thus, our solution decreases the expenses while still
providing extensive fault tolerance.

6. The security layer. Many times reliability (and, hence, dependability) of a LSDS depends not only
on fault tolerance, but also security. If a control network is compromised due to poor security policies (lack of
patches, slow patch cycle, etc), the reliability of the network is decreased. If an attacker can perform attacks
(e.g., man-in-the-middle) and send commands that disrupt the functionality of the LSDS, its reliability is
decreased. Nearly all security threats can be seen as threats to the systems reliability.

For modern LSDS the security features provided by the operating system are simply not enough. Various
authors argue that access control mechanisms for safe execution of untrustworthy services should be based
on security models such as Discretionary Access Control (DAC) [8] or Mandatory Access Control (MAC) [9].
Such models are at the basis of our security layer, which is designed to augment the virtualization infrastructure
previously presented with security features. For fault tolerance each VPS contains replicas of the same processes.
We next assumed that each process represents a service container. We augmented these containers with access
control and policy enforcement mechanisms (see Figure 6.1).

In the DAC model the access to information is determined by the identity of subjects or groups [8]. In
addition, the model assumes that subjects can pass permission to other subjects. The model suffers from various
limitations. Users authorized to access some information may not be the owners of that information. This leads
to situations where a compromised application can control resources far beyond the needs of that application. In
information security the principle of least privilege requires that in a particular abstraction layer of a computing



A Virtualization-based Approach to Dependable Service Computing 345

environment, every module must be able to access only the information and resources that are necessary for its
legitimate purpose. The DAC model lacks enforcements of the least privilege principle. It also lacks domain
separations for users logged into the system.

The MAC model was considered more adequate for our purpose. In this model the access is restricted
based on the sensitivity (as represented by a label) of the information contained in the objects and the formal
authorization of subjects [9]. This model is more adequate to be used for securing distributed services: it
allows the domain separations of users and to enforce the least privilege principle. There are currently several
research-level implementations of this model at OS level: SELinux, Smack or AppArmor are among the most
advanced solutions for Linux-based systems [10].

Security Enhanced Linux (SELinux) implements for Linux a security model that combines Type Enforce-
ment (TE) model, with Role-Based Access Control (RBAC) and Multi-Level Security (MLS) models. The Type
Enforcement model provides fine-grained control over processes and objects in the system while the RBACmodel
provides a higher level of abstraction to simplify user management as stated in [11]. Similar to SELinux, Smack
also implements the MAC security model [12]. It was intended to be a simple mandatory access control mech-
anism but it purposely leaves out the role based access control and type enforcement that are the major parts
of SELinux. Smack is geared towards solving smaller security problems than SELinux, requiring much less
configuration and very little application support. Smack permits creation of labels according to the security
requirements of the system.

These solutions implement the MAC model. The security mechanisms in SELinux and Smack are based
on inodes, while in AppArmor are based on file paths. If a program is restricted from accessing a particular
le using AppArmor, a hardlink to that file would still provide with access, since the protection states only the
original path of the file. From these three, SELinux has the most complex implementation, because it combines
complex mandatory access controls such as those based on type enforcement (TE), roles and levels (RBAC) of
security (MLS). Because SELinux provides more security mechanisms, because of its flexibility in design, we
selected it for the case study of securing enforcement in case of several distributed services.

Security can be applied at various levels. Security mechanisms applied within the application layer have
the advantage of high granularity, while protecting sensitive information, and permit construction of complex
policies. The disadvantage of such mechanisms is the high overhead. The operating system (OS) is the one that
mediates accesses initialized by applications to hardware components. Therefore, access control mechanisms
applied at the OS layer can provide high level of granularity for protecting processes, files, sockets, etc. At this
layer there are also various DAC mechanisms that are already used to protect services.

Our solution creates an orthogonal security policy which, together with the existing security mechanisms
provided by the OS, can be used to enhance the security characteristic of a distributed system.

Services can be secured as other processes running inside a computer system. By reducing the services
to a simple process we can better localize a security issue from the OS point of view. This is illustrated in
Figure 6.1. The example considers three services. Each service runs in a separate service container (P1-3). The
security policies and access rules are applied at the level of each container (in our example permission to access
resources are specified as R1-3). Several such resources can be applied for each container, or several services
can be protected by the same rule. In the example also we show the relation with the fault tolerance solution
- the access control is performed at the level of each process, while the fault tolerance is applied at the level of
sets of processes, running in virtual VPSs.

So each Pi process has permissions to access the resource Ri. The example illustrates the use of several
security layers. The processes are first protected by the DAC mechanism provided at the OS mechanisms. If
this layer is compromised, each service is further protected by an individual security policy. Furthermore, each
service is enclosed inside a unique sandbox that does not include any other process. In this case, even if one
service is compromised, the other services are still intact and further protected.

These security mechanisms were implemented using SELinux. Over the DAC security layer provided by
many Linux flavors, we used the MAC security layer assured by SELinux. The SELinux solution already confines
twelve daemons inside specific domains. Based on the provided security functions, we developed protection
mechanisms for several services. The result is a system having an enhanced security characteristic because
beside been protected from the damage made by the twelve daemons it further offers protection guarantees
against damage made by the web container and the monitoring service. These services are confined in specific
sandboxes according to their activities.



346 C. Dobre et al.

Fig. 6.1: Malicious attacks against services.

7. Evaluation results. In the sequel we present a series of results demonstrating the capabilities and
performances of the proposed solutions. We conducted our tests on the NCIT testbed [22], an experimental
Grid platform with advanced scheduling and control capabilities. The testbed is part of the national Grid
collaboration and it includes several sites geographically distributed in various places in Romania. For the
experimental setup, we considered the use of 10 nodes belonging to the NCIT Cluster at University Politehnica
of Bucharest. The nodes are equipped with x86 64 CPUs running at 3 GHz, 2 GB RAM, interconnected via a
10 Gigabit Ethernet network. An additional set of 5 nodes situated at CERN, Geneva, were used to evaluate
the overhead of the solution.

We evaluated the dependability mechanisms by combining virtualization with the use of the security mech-
anisms. The scenario involved an ApMon component, which is already used in real-world distributed infras-
tructures at the monitoring layer [13], and then the Proxy service previously used in evaluations, and that is
designed to enhance the fault tolerance capability of distributed systems [14].

Monitoring services are encountered in many distributed systems, and, especially for fault-tolerance, one
needs to have guarantees that the monitoring information is unaltered by malicious attackers. On the other
hand, the Proxy service illustrates the mechanisms applied to protect a service container.

We first closed each service inside a SELinux sandbox, running on a virtual VPS that is its own domain.
This domain confines inside any possible damage. For example, the ApMon is running within the apmont
domain. To allow ApMon the access to monitor in this domain we specified how a process is allowed to run in
the apmont domain, and what it is allowed to do. The entry point of the apmont domain is any executable
file labeled with the type apmonexect. Once a process executes this file, it transitions in the apmont domain
and runs only under the allow rules of the domain. This example is illustrated in Figure 7.1. In the example



A Virtualization-based Approach to Dependable Service Computing 347

the executable file is /bin/apmon and the allowed actions are reading the configuration file, accessing /proc
contents and sending monitoring information to a MonLISA service.

Fig. 7.1: Security mechanisms applied to an ApMon service.

A different situation is illustrated by the security mechanisms applied to the Proxy service. In this case
we extended the enhancing security mechanisms to service containers, themselves running on different VPS
nodes. What a service is allowed to do and what not sometimes differ greatly when treating security for services
unitarily and independent from the container. A Proxy service may need access to some type of files, while
a monitoring service wants for example access to other types. They can both run as applications requiring
searching and loading dynamic libraries, memory execute permissions and network access. But one service
might require some type of restrictions, while another might require completely different security limitations.
In this case, we first developed the SELinux policies for specifying what the process represented by the service
container (the current implementation is based on Tomcat as a web container for services) is allowed to do.

Fig. 7.2: The malicious ApMon application is denied connect access to port 8884.

We defined the domains and types of the policy that help to sandbox the restraint Tomcat container. For
example, the Tomcat process only runs in the local system as daemon, started from the initrct domain, the
SELinux domain for the init processes. This was further augmented with policies for the individual services
running inside the container. The policies are enforced using two domain transitions before reaching the domain
of a usual Java application. This idea was first introduced in [15].



348 C. Dobre et al.

We evaluated several situations in which failures and attacks from malicious code can be contained and
avoid the damage of the whole system though validating imposed policies. We used experiments using from
strict policies, where nothing is allowed to run and one has to define specific allow rules for each actions, to
more relaxed ones, such as every subject and object can run uncontrolled except specific targeted daemons that
are constrained by proposed rules.

A first experiment uses a verification that an ApMon application still works. In this scenario the ApMon
application sends information about the system inspecting the /proc directory. The monitored information is
sent using datagrams to a MonaLISA farm. Next we tested what happens when ApMon is compromised and it
tries to connect on another port. As expected, the system detects an attempt to break the imposed execution
policy and interrupts the malicious activity (see Figure 7.2).

In another experiment we evaluated a Tomcat web service container augmented with the proposed depend-
ability solutions. The results of these show experiments that the solution is able to preserve the defined policy.
For example, in an experiment we were interested if the Tomcat web services container is able to contain the
damage, in case of a situation where the monitoring service itself inside Tomcat suffers an attack and, as a
consequence, it behaves maliciously and tries to send valuable information about requests received from the
Proxy service somewhere else than it is supposed to. The reaction of the security policy is as expected thus the
attempt of connecting on an incorrect port fails because the action was not specified as an allowed action (see
Figure 7.3).

Fig. 7.3: Test service is denied to connect on port 9090.

We next continued with a series of experiments using LISA [24], a lightweight dynamic service that provides
complete system and application monitoring. In this case the objective was to evaluate the overhead of the
proposed solutions in terms of network traffic and the load of the systems on which services are running. The
testbed involved three stations, two located in CERN, Switzerland and one in Romania. Each station hosts a
VPS. We first assumed two services running on each of the nodes in Switzerland, and on the node in Romania
we started the Jini service. At one point, a process fails in order to see how the system reacts to its failure.

During these experiments we measured a sustained additional traffic varying between 5 and 20 Kbps, while
the machines load did not change significantly (see Figure 7.4). The measured values demonstrate that the
overhead caused by running the processes is very low, both in terms of network traffic and CPU usage or system
load.

These experiments reveal a good potential for integrating the services into various distributed environment
for increasing dependability. The failure detection service is able to recognize various errors and, in the same
time, assures good running performances. The detection is further augmented with the VPS solution that is
able to provide transparent failure recovery, by resubmitting faulty requests to still-running service replicas. In



A Virtualization-based Approach to Dependable Service Computing 349

Fig. 7.4: The results for the evolution of the network traffic.

the end, security attacks are correctly recognized by the MAC mechanisms. Combined, these services provide
increase reliability and availability properties.

8. Conclusions and future work. In this paper we presented an approach to ensuring dependability in
LSDS using virtualization for fault-tolerance, augmented with advanced security models. Today dependability
remains a key element in the context of application development and is by far one of the most important issues
still not solved by recent research efforts.

Our research work is concerned with increasing reliability, availability, safety and security in LSDS. The
characteristics of such systems pose problems to ensuring dependability, especially because of the heterogeneity
and geographical distribution of resources and users, volatility of resources that are available only for limited
amounts of time, and constraints imposed by the applications and resource owners. Therefore, we proposed
the design of a hierarchical architectural model that allows a unitary and aggregate approach to dependability
requirements while preserving scalability of LSDS.

We presented implementation details of such proposed methods and techniques to enable dependability in
LSDS. Such solutions are based on the use of tools for virtualization and security, in order to provide increased
levels of dependability. We proposed several solutions to increasing fault tolerance and enforcing security. The
fault tolerance is based on the use of virtual containers, either in the form of virtual sandboxes running on top
of the operating systems, but we are currently also working on proposing logic containers composed of various
replicated services served by an intermediary Proxy service. We also presented solutions to introduce modern
security models, such as MAC, to various distributed services. The security policies in this case are applied at
various levels, by offering protection at operating system level, at service containers or further to the individual
service.

Acknowledgments. The research presented in this paper is supported by national project ”DEPSYS
- Models and Techniques for ensuring reliability, safety, availability and security of Large Scale Distributes
Systems”, Project CNCSIS-IDEI ID: 1710. The work has been co-funded by national project ”TRANSYS -
Models and Techniques for Traffic Optimizing in Urban Environments”, Contract No. 4/28.07.2010, Project
CNCSIS-PN-II-RU-PD ID: 238, and by the Sectoral Operational Programme Human Resources Development
2007-2013 of the Romanian Ministry of Labour, Family and Social Protection through the Financial Agreement
POSDRU/89/1.5/S/62557. The contributions from all authors to this paper are equal.



350 C. Dobre et al.

REFERENCES

[1] V. Cristea, C. Dobre, F. Pop, C. Stratan, A. Costan, and C. Leordeanu, Models and Techniques for Ensuring Relia-
bility, Safety, Availability and Security of Large Scale Distributed Systems, in Proc. of the 3rd International Workshop
on High Performance Grid Middleware, the 17th International Conference on Control Systems and Computer Science,
Bucharest, Romania, May 2009, pp. 401–406.

[2] H. Jin, X. Shi, W. Qinag, and D. Zou, DRIC: Dependable Grid Computing Framework, IEICE - Transactions on Information
and Systems. Volume E89-D, Issue 2, February 2006, pp. 126–137.

[3] P. Guillaume, Design of an Infrastructure for Highly Available and Scalable Grid Services, D3.2.1. Technical Report, Vrije
Universiteit, Amsterdam, 2006.

[4] J. Jayabharathy, and A. Ayeshaa Parveen, A Fault Tolerant Load Balancing Model for Grid Environment, Pondicherry
Engineering College, Pondicherry, India, International Journal of Recent Trends in Engineering, Vol 2, No. 2, November
2009.

[5] B. Yagoubi, and M. Medebber, A Load balancing Model for Grid Environment, in Proc. of the 22nd International Sympo-
sium on Computer and Information Sciences (ISCIS 2007), Ankara, Turkey, 2007, pp. 1–7.

[6] I. Sommerville, S. Hall, and G. Dobson, Dependable Service Engineering: A Fault-tolerance based Approach, Technical
Report, Lancaster Univ., 2005.

[7] J.P. Walters, and V. Chaudhary, A fault-tolerant strategy for virtualized HPC clusters, J. Supercomput., 50(3), Dec. 2009,
pp. 209–239.

[8] S. Dranger, R.H. Sloan, and J.A. Solworth, The Complexity of Discretionary Access Control, in Proc. of the International
Workshop on Security (IWSEC 2006), Kyoto, Japan, October 2006, pp. 405–420.

[9] H. Lindqvist, Mandatory Access Control, Master’s Thesis in Computing Science, Umea University, Department of Computing
Science, SE-901 87, Umea, Sweden, 2006.

[10] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-Hartman, Linux Security Modules: General Security
Support for the Linux Kernel, USENIX Security, Berkeley, CA, 2002, pp. 17–31.

[11] S. Smalley, Configuring the SELinux policy, NAI Labs Report #02-007, 2002.
[12] C. Shaufler, The Simplified Mandatory Access Control Kernel, Whitepaper, 2008.
[13] I. Legrand, H. Newman, R. Voicu, C. Cirstoiu, C. Grigoras, C. Dobre, A. Muraru, A. Costan, M. Dediu, and C.

Stratan, MonALISA: An agent based, dynamic service system to monitor, control and optimize distributed systems,
Computer Physics Communications, Volume 180, Issue 12, December 2009, pp. 2472–2498.

[14] M. Nastase, C. Dobre, F. Pop, and V. Cristea, Fault Tolerance using a Front-End Service for Large Scale Distributed
Systems, in Proc. of 11th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing,
Timisoara, Romania, 2009, pp. 229–236.

[15] C. Hger, Security Enhanced Linux - Implementierung und Einsatz, Technical Report, Technical University Berlin, Complex
and Distributed Systems, 2008.

[16] C. Fetzer, M. Raynal, and F. Tronel, An adaptive failure detection protocol, in Proc. of the 8th IEEE Pacific Rim Symp.
on Dependable Computing, Lanzhou, Gansu, 2001, pp. 146–153.

[17] X. Defago, N. Hayashibara, and T. Katayama, On the Design of a Failure Detection Service for Large-Scale Distributed
Systems, in Proc. of the Intl. Symp. Towards Peta-bit Ultra Networks (PBit 2003), Ishikawa, Japan, 2003, pp. 88–95.

[18] C. Dobre, F. Pop, A. Costan, M.I. Andreica, and V. Cristea, Robust Failure Detection Architecture for Large Scale
Distributed Systems, in Proc. of the 17th International Conference on Control Systems and Computer Science (CSCS 17),
Bucharest, Romania, 2009, pp. 133–141.

[19] L. Andrei, C. Dobre, F. Pop, and V. Cristea, A Failure Detection System for Large Scale Distributed Systems, in Proc.
of 2010 International Conference on Complex, Intelligent and Software Intensive Systems (CISIS 2010), Krakow, Poland,
2010, pp. 482–489.

[20] L.M. Silva, J. Alonso, and J. Torres. Using Virtualization to Improve Software Rejuvenation, IEEE Trans. Comput. 58,
11 (November 2009), pp. 1525–1538.

[21] B. Jansen, H.V. Ramasamy, M. Schunter, and A. Tanner. Architecting Dependable and Secure Systems Using Virtu-
alization. In Architecting Dependable Systems. Lecture Notes In Computer Science, Vol. 5135. Springer-Verlag, Berlin,
Heidelberg (2008), pp. 124–149.

[22] The NCIT Cluster, http://cluster.grid.pub.ro/, Retrieved September 14, 2011.
[23] J.R. Douceur, and J. Howell. Replicated Virtual Machines. Technical Report MSR TR-2005-119, Microsoft Research, Sep

2005.
[24] I.C. Legrand, C. Dobre, R. Voicu, C. Cirstoiu. LISA: Local Host Information Service Agent. Proc. of the the 15th

International Conference on Control Systems and Computer Science (CSCS-15), Bucharest, Romania, (2005).

Edited by: Dana Petcu and Jose Luis Vazquez-Poletti
Received: August 1, 2011
Accepted: August 31, 2011



Scalable Computing: Practice and Experience

Volume 12, Number 3, pp. 351–362. http://www.scpe.org
ISSN 1895-1767
c© 2011 SCPE

AN ADAPTIVE AND SCALABLE REPLICATION PROTOCOL ON POWER SMART

GRIDS∗

JOAN NAVARRO†, JOSÉ ENRIQUE ARMENDÁRIZ-IÑIGO‡, AND AUGUST CLIMENT §

Abstract. Cloud based storage systems are known to provide high scalability and reliability overcoming the traditional
constraints of static distributed systems. The processing capacity over thousands of machines makes this approach especially
suitable for many environments. In particular, we focus on power networks. These systems are currently decentralizing their
architectures due to the growth of renewable sources and the increasing power demand which are obstacles to the traditional power
network radial distribution. This new decentralized architecture, which demands computing abilities for network monitoring and
improving customer services, is denoted as power smart grid. This paper proposes a new scalable dynamic storage architecture and
its associated replication protocol, with its correctness proof, aimed to store data with different consistency levels. In addition it is
able to perform some parallel data computations adapting itself to the physical and dynamic power smart grid layout.

Key words: Dynamic systems, cloud computing, eventual consistency, smart grids, replication.

1. Introduction. Power networks are demanded to be highly reliable and available because they have
to supply all the infrastructures of a country at anytime and anywhere. This prevents power companies from
updating and improving their systems because most of the changes may seriously affect critical services they
are currently providing since novel devices might not be as tested as older ones. This leads to inefficient—due
to their centralized nature—schemes which are expensive and even harder to maintain and scale.

With the growth of renewable energies the power network centralized model is not only able to scale but also
cannot work properly; the aforementioned renewable energy sources behave different than traditional sources.
Moreover, current power networks are not able to remotely monitor power consumptions on the low voltage
(LV) network which prevents companies from building new business strategies fitted to the end user needs [8].
This situation urges a substantial change which consists of decentralizing the power network and building a
distributed system able to fulfill the current society requirements and technologies.

Recently, this new paradigm has also been referred to as power smart grid (intelligent grid). The goal of
a smart grid is to take advantage of the current digital technologies and build up an intelligent information
system over all devices within the power network: from suppliers to consumers. This might allow companies to
efficiently tune the power distribution and route energy where and when it is needed.

Smart grids have been a hot topic during the last few years and several approaches have been proposed:
the gridSmart project [1] proposes an upgrade of the Ohio electric grid by using digital communications and
automated functioning. This permits customers showing how smart grid technologies provide customers with
greater energy control. It can also improve electricity delivery and cut energy consumption to delay the need
to build more power plants. The Masdar Eco city [23] project proposes to build a energetically sustainable
city in Abu Dhabi. IBM and Malta’s government are powering a project [24] which consists in transforming
the distribution network to improve operational efficiency and customer service levels by changing the current
electricity meters to smart devices and connecting them to an information system enabling remote reading,
management, and monitoring throughout the entire distribution network.

The decentralization of a power network, actually the smart grid design, covers several disciplines such as
(1) electricity, there are multiple power sources using different technologies; (2) networking, there must exist a
secure communication between all the nodes which generate data on the system; (3) computer engineering, in
the sense that this data must be stored and computed.

The purpose of this paper is to focus on the computer engineering field and propose an architecture and its
storage protocol, able to efficiently store and ease the computation of any data generated by the power network
inspired by the flavors of cloud computing. This distributed storage architecture is slightly different than the
ones used on web services [27] or in pure cloud computing based storage architectures [34, 25] since smart grids

∗The research leading to these results has received funding from the European Union European Atomic Energy Community
Seventh Framework Programme (FP7/2007-2013 FP7/2007-2011) under grant agreement nr. 247938 for Joan Navarro and August
Climent and by the Spanish National Science Foundation (MEC) (grant TIN2009-14460-C03-02) for José Enrique Armendáriz-Iñigo.

†Distributed Systems Research Group, La Salle - Ramon Llull University, 08022 Barcelona, Spain (jnavarro@salle.url.edu).
‡Dpto. Ing. Matemática e Informática, Universidad Pública de Navarra, 31006 Pamplona, Spain

(enrique.armendariz@unavarra.es).
§Distributed Systems Research Group, La Salle - Ramon Llull University, 08022 Barcelona, Spain (augc@salle.url.edu).

351



352 Joan Navarro et al.

demand a set of requirements that have not been explored yet. Hence, we also provide a rough correctness
verification of the distributed storage protocol.

The reminder of this paper is organized as follows: Section 2 describes the requirements that the distributed
storage system must fulfill within the power smart grid framework. Section 3 describes the proposed architecture
and explains how it has to be included within the smart grid. Section 4 reviews the system correctness in
absence of failures. Section 5 discusses our proposal and suggests other domains of application. Finally, Section
6 concludes the paper.

2. Smart Grids Storage Requirements. Smart grids, as opposite to classical power networks, have
become data driven applications since they own a management layer which takes decisions based on the current
status of the network. This issue forces designers to redefine the whole power network architecture and its
specifications, as now there is a need for storing and processing these datum besides supplying power. This
section reviews such requirements and states the basics of the architecture proposed in Section 3.

The strongest requirements of any device inside a smart grid are availability and reliability since denials of
service are not acceptable at any situation. Moreover, smart grids are demanded to perform many computations
from data collected by smart meters and intelligent electronic devices (e.g. circuit breakers, voltage regulators,
etc.). This, extends both requirements—availability and reliability—not only to the physical infrastructure,
targeted at supplying energy, but also to datum and their storage.

To fulfill these constraints, we propose a distributed storage architecture built on top of the power smart
network able to afford the dynamic behavior of smart grids (e.g. a solar panel may stop supplying energy or
an end-user consumer may switch from its local power generation device to the supplier generation network).
Actually, distributed storage systems are known to provide availability, reliability, and fault tolerance on many
scenarios [15, 17].

Distributed storage systems can be either static or dynamic. Static systems [17, 26] require to know the
identity of all nodes a priori in order to be able to distribute storage and computation. On the contrary, dynamic
systems [2, 34, 22, 25, 13] do not make any assumption about the system composition, which allow processes
joining and leaving at will. This kind of systems are designed to be fault tolerant, understood as the ability to
tolerate erratic behaviors from random nodes, and used to improve the scalability of static systems by relaxing
the data consistency restrictions [7].

Smart grids demand a trade-off between both scenarios because they behave as a dynamic system but they
may need some strong consistency [33] requirements that typical cloud based techniques are currently unable to
offer. Hence, our proposal is to build a hybrid system which takes advantage of both distributed storage system
schemes, static and dynamic.

Far from just storing data, there are also several applications (also referred to as smart functions) that
must run over the smart grid, such as power flow monitoring, under/over voltage monitoring, load shedding,
or fault analysis. Each application has its own particular requirements so the proposed architecture must be
flexible enough to support such variety of functions. Thus, the distributed storage architecture must provide
the following:

1. Reliability. The proposed architecture must be fully tested since major changes on it may imply eventual
denial of services.

2. Availability. The architecture must ensure that there always be available data despite its level of
consistency.

3. Fault tolerance and recovery. The system must be able to reconfigure its internal characteristics in
order to keep supplying and storing data in case of failure.

4. Dynamic consistency. Smart grids run several functions that might require different levels of consistency.
For example, on one hand, data needed to perform a load shedding requires strong consistency [33] since
it performs critical operations with the current values of the network. On the other hand, data needed
to perform power monitoring might require a weaker level of consistency since this function tolerates
some kind of delay.

5. Minimum message exchange. It is important to keep a low network overhead in order to guarantee that
there were no bottlenecks, and data will flow over the network in an efficient way.

6. Simplicity. This is the key to build a system easy to maintain and adaptable to other domains of
application.

The next section proposes the distributed storage architecture and places it inside the smart grid.



An Adaptive and Scalable Replication Protocol on Power Smart Grids 353

Strongest consistency

k−1 consistency

k consistency

Weakest consistency

k−2 consistency

P13

P11

P12

P21

PP23

P22

PP33 P32

P31
P41

PP43

P42

S51

S71

S81

S61

Computation

Fig. 3.1: Proposed distributed storage system.

3. System Architecture. Our proposal is inspired on the Primary Copy replication technique [35] used
in transactional environments, where all updates are handled by a single node (also referred to as primary) and
it propagates them to their replicas (also referred to as subscribers). However, our approach is considerably
different from the classical primary copy protocol in terms of (1) primary updates, (2) subscriber updates, and
(3) scalability.

Our architecture supports several primary nodes; actually each node can be considered as a primary which
means that now updates’ load is balanced between several devices. Each primary node treats the rest of devices
in the smart grid as subscribers. In addition, an epidemic updates based protocol is proposed in order to
replicate data across subscribers. As shown below, in order to overcome the classical scalability constraints of
transactional systems our architecture breaks up with the relational scheme and deals with datum as key-value
pairs.

This section details thoroughly these three key points and fits the replication protocol on top of the power
smart grid infrastructure. Hence, it does not depend on any low layer hardware nor software specification.

As depicted in Fig. 3.1 a smart grid is seen as a set of intelligent electronic device clusters linked by a
telecommunications network (i.e. power line communication, wireless network, wide area networks, etc.). A
cluster is composed of up to ten devices (drawn as rounded circles in Fig. 3.1) placed on the same geographical
area. Each device has limited storage and computing capabilities since it might not be able to solve the whole
required smart functions on its own. We also consider that smart meters are attached to these devices and rely
on them to report their measurements to the rest of the power smart grid through the computation unit.

Each device in the cluster is labeled as Xij where X corresponds to the device role in the cluster (Primary,
Pseudo-Primary or Secondary); i is the cluster identifier, and j is the device identifier. In the same way, we
find very useful to define the ancestor of a clusterm as the node Xij (that obviously belongs to clusteri (m 6= i))
which is updating an arbitrary pseudo-primary k of this cluster (PPmk). Fig. 3.1 shows an example where we
have that region 2 is formed by devices P2k | k = [1, 3] where P21 is the primary of this region; P22 is a common



354 Joan Navarro et al.

device; P23 is the pseudo-primary, (that’s why it is named PP23); and, its ancestor is P11. Respectively, S61 is
the only device on region 6 and its ancestor is PP33.

Regarding data consistency, we define the replication depth r as the amount of different clusters that data
are allowed to cross when they are being replicated. This value might be dynamically tuned according to the
computation latency or the system performance.

Next, we describe the proposed architecture and explain how we solve the replication, consistency, and fault
tolerance issues.

3.1. Architecture Overview. Although the number of smart sensors may substantially increase as time
goes by, the number of devices that control them should not grow in the same way. The proposed architecture
focuses on the devices instead of the smart meters which is an attempt to avoid scalability issues from the latter
ones by hiding their dynamism. However, the system must be robust against possible node failures which forces
designers to implement some techniques commonly used in dynamic systems [15, 13, 2].

In order to provide a high available system able to ease the smart functions distributed computation, we
propose an architecture inspired on the Primary Copy [17, 35, 30] (also referred to as Primary Backup) scheme.

We distinguish two different types of smart clusters: (1) storage clusters which do not generate data (regions
5, 6, 7, and 8 in Fig. 3.1) and (2) active clusters that generate data (regions 1, 2, 3, and 4 in Fig. 3.1).

Any device belonging to an active cluster may simultaneously adopt different roles according to the current
situation: (1) primary master, (2) primary slave, (3) pseudo-primary, and (4) secondary. When a device is
propagating data from their directly attached smart meters, it will act as a primary master and will treat the
rest of devices in its cluster as their primary slaves (in Fig. 3.1, P11, marked with a dashed blue circle, is the
primary master and P12, P13 are their primary slaves). When a device receives data from another cluster it will
be acting as a repeater (pseudo-primary) (in Fig. 3.1 PP23, PP33, and PP43 are the pseudo-primaries of P11).
Moreover, if a device receives updates from other clusters but it does not propagate them, it will be acting as
a secondary (in Fig. 3.1, S51, S61, S71, S81 behave as secondary devices).

Note that blue lines in Fig. 3.1 just illustrate the particular case of P11 broadcasting data. In fact, the
proposed architecture must be understood as if all nodes where generating data. Hence all nodes may act as
primary, pseudo-primary, and secondary devices at a time.

Smart grids need to compute many smart functions [10] indeed. Our architecture is flexible enough and
able to adapt itself to the data freshness requirements [30, 4] imposed by each smart function. This way of
propagating updates along the replication tree structure allows the system to find the most appropriate version
for computing a function while circumventing all traditional problems of scalability and availability in these
approaches [26, 4, 19, 35]; this will be described in a more detailed manner in Section 3.2. Hence, the primary
master of a region (i.e., P11) must decide when to passively replicate its data to the pseudo-primaries of the
neighboring regions (P21, P31, P41). At the same time, each pseudo-primary has to take the same decision
with its data and their pseudo-primaries or secondaries. These decisions must be taken according to (1) the
function periodicity (i.e., flow monitoring will require faster updates than asset management), (2) link status
and congestion, and (3) cluster status (i.e., a general master might decide to asynchronously replicate its data
when it detects that there are very few alive nodes on its cluster).

Actually, once the primary master has sent its data to a pseudo-primary node of another cluster, a recursive
process starts where each pseudo-primary looks for another pseudo-primary in another neighboring cluster to
propagate its data. This process finishes when there are no more clusters or there is a cluster which has no more
neighbors (i.e., S51, S61, S71, and S81). The decision process must be aware of not falling in cluster loops and
ensure that in each cluster there is only one pseudo-primary node that contains data from the primary master.

Each time the computation unit of the smart grid needs to calculate the result of a given smart function,
it first attempts to use data from its nearest neighboring cluster. If data contained on that cluster has a
consistency level k greater than l, where l is the freshness level required by the function, it will use that cluster
to perform computation. Otherwise, it will get redirected to its ancestor node with a freshness index k− 1 and
repeat the operation.

The following subsections detail how our architecture deals with replication, consistency and fault tolerance
issues.

3.2. Replication. Distributed systems replicate data to provide scalability, availability, and fault toler-
ance. However, replication increases the number of messages in the sense that all replicas have to be synchronized



An Adaptive and Scalable Replication Protocol on Power Smart Grids 355

Definitions:

1. i , Current cluster ID
2. j , Current device ID

3. d , Smart meter ID
4. c , Required consistency level

5. r , Replication depth

I. UponSmart meteri j(d) generatesdatai j(d)

1. broadcast(clusteri , j, datai j(d), d)

II. Broadcast delivery(k, datakl(d), d)

1. store data (datakl(d),k)
2. if l = i then
⋆ r := GetRD(datakl(d), d)
⋆ if r > 0 then
♦ list := < i, j >
♦ multicast(neighborsi j , list, datakl(d), r−1)

III. Multicast delivery(list, datakl(d), r)

1. store data (datakl(d), last item(list))

2. if r > 0 then
⋆ destination := (neighborsi j ∩ list)\

(neighborsi j ∪ list)
⋆ list := list ∩ < i, j >
⋆ multicast(destination, list, datakl(d), r−1)

IV. Data request(datakl(d), c) from source

1. if ∄ datakl(d) then
⋆ unicast(source, nil, −1)

2. else ifc ≥ GetConsistency(datakl (d)) then
⋆ unicast(ancestor(datakl (d)), datakl(d), c)

3. else

⋆ unicast(source, datakl(d), c)

Fig. 3.2: Replication protocol at smart deviceij

which can potentially reduce the system throughput. To avoid this situation several techniques are proposed in
the literature [31, 15, 11, 2].

Regarding the time when updates get propagated to the replicas there exist two major strategies: eager and
lazy replication. On one hand, eager replication [5] consists of writing data to all replicas before finishing the
write operation (similar to 2PC in databases). This solution provides strong consistency [33] but has limited
scalability. On the other hand, lazy replication [21, 35] consists of writing to all replicas after exhausting the
write operation. This technique achieves higher scalability but has more difficulties to maintain consistency—i.e.
replicas may diverge.

Regarding the amount of replicas that update data, there exist two major strategies: active and passive
replication. Active replication [3] broadcasts updates to all replicas at a time. Again, this technique provides
strong consistency since all replicas are easily synchronized but has low scalability. Passive replication [29]
processes updates on a single site called primary which propagates its updates to another site called backup.
At the same time, this backup site can also propagate its state to another backup site until achieving the
desired replication depth. This solution provides higher scalability but has some troubles on maintaining strong
consistency since all replicas might be unsynchronized.

The final consideration regarding to scalability is the number of messages exchanged [36]; this is a critical
factor too since the greater the number of messages exchanged per operation are the more network stalls we
have. We can consider that there can be a linear interaction where the number of messages exchanged depends
on the kind of operation; or, otherwise, constant interaction where a fixed number of messages is exchanged per
operation. The former features poor scalability while the latter one can increase the scalability though we have
to take into account that they have to be kept to a minimum (ideally one message and, at most, two).

In our system we have taken these previous considerations and propose a hybrid solution. We have consid-
ered to mix passive and active replication; however, we consider the propagation of changes to a small subset of
replicas and the replicas belonging to this subset are responsible for propagating the changes to another disjoint
small subset of replicas and so on up to the replication depth specified by the system for a certain variable.
As depicted in Fig. 3.2, our proposal is a hybrid solution between all these techniques and benefits from the
strengths of each solution:

1. When a device (primary master, P11 in Fig. 3.1) receives data from its smart meters it eagerly replicates
them by broadcasting (step I in Fig. 3.2) these data to all devices within its cluster (primary slaves,
i.e., P12 and P13 in Fig. 3.1). Therefore, it is performing an active replication (step II.1 in Fig. 3.2).

2. If the replication depth r associated to these kind of data is greater than 0, the primary master has
also to lazily replicate these data to other clusters (1) avoiding replication loops and (2) multicasting
relevant meta-data.
In order to avoid replication loops (i.e., the same cluster has different versions of the same object), the
device must build a list with the ancestors of data it is currently processing and remove all devices of
its neighbor list that are in the ancestor list. Recall that each primary, or pseudo-primary, device has
only one pseudo-primary per region.
Regarding the neighbor discovery, we assume that given a neighboring cluster B from cluster A, all the



356 Joan Navarro et al.

nodes in cluster A will choose the same pseudo-primary from cluster B. If this pseudo-primary fails,
the next pseudo-primary chosen will be the one with the lowest identifier in cluster B. For example, in
Fig. 3.1, if P33 fails, P32 and P33 will also chose S61 and S71 as their pseudo-primaries.
Upon the neighbor list has been pruned (and updated), the device multicasts (1) the ancestors list,
(2) the stored datakl(d) and (3) a decremented value of replication depth to its neighbors (i.e., PP23,
PP33 and PP43 in Fig. 3.1) as shown in step II.2 in Fig. 3.2.

3. This is repeated while the replication depth is greater than 0 as shown in step III in Fig. 3.2. Note that
we are actually performing active replication within devices of primaries’ area and passive replication
within devices of different clusters.
The first time data from smart meterd achieves the latest pseudo-primary (r has reached the 0 value), or
secondary (i.e. S51, S61, S71, S81 in Fig. 3.1) this device will send to the computation unit its identifier.
This ensures that the computation unit will eventually know where to find the furthest replica of data
associated to smart meterd. Recall that the nearest device that contains these data is its primary,
which is also known by the computation unit in advance.

4. When a device receives a data query from the computation unit, it first checks if the consistency level
of its stored data is enough to perform computation. If it is greater than the one required c, it will give
back its stored data, otherwise it will forward this query to its ancestor as shown in step IV in Fig.
3.2. This solution is inspired in the passive replication technique and eases distributed computation as
discussed in Section 5.

Therefore, this replication protocol performs both (1) active and eager replication in the primary-master’s
cluster and (2) passive lazily replication in other clusters inspired in the fundamentals of a primary-copy scheme.
This improves the scalability issues of classical architectures [17, 19] since we have restricted an controlled the
amount of replicas that receive the changes at a time and implement different regions (set of clusters) with
different consistency levels. This last feature is very interesting; some computations do not need to be exclusively
forwarded to the primary replica, it can be delegated to other replicas and, thus, the system achieves a better
performance. This can be best seen with two examples, if we want to check the consumption of a subscriber for
billing purposes then we will need to go to the primary (strong consistency). The other example can consist in
checking the power consumption of a certain urban area to detect the variation and decide whether to derive
or not more power to that area (this is specially useful in summer with air conditioning systems) and the
consistency is not so critical.

Finally, we define the replication chain as the closed set of devices which exchange versions of the same
data item. For example, in Fig. 3.1 there are four replication chains concerning data generated by smart meters
attached to P11: {P11, PP23, S51}, {P11, PP33, S61}, {P11, PP33, S71}, and {P11, PP43, S81}.

The following section describes how consistency is kept under this replication protocol.

3.3. Consistency. Research on consistency protocols has been conducted for many years and several
approaches have been proposed by the community. First attempts [5] on keeping consistency in distributed
systems consisted of building serializable plans by avoiding read and write operations performed concurrently
over the same data item. This technique ensures that data will be always seen by anyone immediately after
its update; which is also known as strong consistency [33]. Later, as the performance requirements increased,
researchers relaxed the consistency guarantees by defining the weak consistency [33] with the aim of improving
scalability and availability. These techniques [33] accept a limited period of time (also referred to as inconsistency
window) where updates are available only to a subset of sites in the system. When the inconsistency window
expires, they ensure that data is consistent.

Generally, this leads us to two major alternatives when defining the consistency properties of a system:
(1) strong consistency and (2) weak consistency. Strong consistency provides us with high consistent systems
but with poor scalability and availability since all replicas must be synchronized. In the other hand, weak
consistency provides higher scalability and availability but limited consistency features.

Regarding our proposal, we take advantage of both strong and weak consistency strategies and propose a
hybrid solution inspired by cloud-based storage and data stream warehouses [15, 11, 16].

Cloud computing-based storage techniques [34, 25], on its effort to achieve high scalability and availability,
typically implement a specific form of weak consistency: eventual consistency [33]. This technique states that
once data is updated, all replicas will eventually get that value if no more updates are applied.

Smart grids’ behavior has many similarities with stream warehouses [16] since there is a continuous stream



An Adaptive and Scalable Replication Protocol on Power Smart Grids 357

of data (generated by smart meters) which has to be stored. In order to overcome the classical update and query
consistency issues given on such scenarios [16], our architecture guarantees that there will never exist multiple
attempts to write (or read) the same data item into the same place. Note that two or more replication chains of
the same data item never converge to the same cluster. Nevertheless, we find very useful to use multi-version [6]
techniques used in stream warehouses to maintain a notion of consistency between different data stored in each
device and enhance the global system performance.

Although IEC 61850 standard [20] defines the data model that a smart grid should store and our architecture
deals with this model by hiding data structures inside devices, we have to take care about data periodicity.
Each smart meter generates data at different intervals, i.e., voltage measurements might be generated with a
higher frequency than heat measurements. Hence, each data measurement is stored with the time stamp k it
was originally acquired, similar to the version technique used in stream warehouses [16, 6].

Actually, there exists a close relationship between this time stamp k in which data are generated and
the consistency of these data. Roughly speaking we can assure that the greater the k, the more recent data
measurement is but its consistency is potentially weaker. Recall that here we understand consistency as the
property which states that all the members in the replication chain own the same data item with time stamp
k (also referred to as version).

In fact, when our architecture is required to store stream data measurements [16, 33], the most recent data
versions will be always located closer to their sources; whereas oldest versions might have already reached the
furthest devices in the replication chain. However, if a given measurement is not so frequently taken, then the
most recent version will be found anywhere in its associated replication chain.

In some use cases, the computation unit can still work with older versions (weakly consistent) to perform
the calculations required. Hence, when it wants to obtain a specific data item, it can include a k value to state
that the computation should be done with values that equal to (or greater than) k. To this end, queries will be
traveling along the replication chain associated to each data measurement to find the proper version up to its
master (in the case that the required k version is not found).

In the master’s cluster we implement strong consistency between all replicas (P11, P12 and P13 in Fig. 3.1).
This improves the fault tolerance of the system since another device (primary-slave) of the cluster could easily
take over from a primary-master’s fault. Moreover, this keeps us safe from the typical single point of failure
problem. Actually, all data stored in any device belonging to the master’s cluster has the highest k level of
consistency, since no newest data have been generated.

Once data are strongly consistent in the master’s cluster, devices start propagating them with a time stamp
k to their pseudo-primaries (as shown in Fig. 3.2, P11 will broadcast to PP23, PP33 and PP43). Recall that
decisions of when data must be propagated are taken according to the smart functions and system status. There-
fore, we are currently implementing an eventually consistent system between the pseudo-primaries. It is more
likely that data stored in these pseudo-primaries will provide weak consistency since new data measurements
will come from smart meters with a time stamp strictly greater than k.

To sum up, from the consistency point of view, we have shown how our hybrid architecture uses both
strong and weak (actually k-weak) consistency techniques. Next we describe how our architecture deals with
fault tolerance.

3.4. Fault Tolerance. Fault tolerance is understood as the ability of the system to recover from a sponta-
neous site fault. Distributed systems are prone to different types of site failures [12]. Researchers have to adapt
their techniques according to the domain of use and the intrinsic characteristics of the distributed system. This
section explores (1) which kind of failures smart grids are prone and (2) how our proposal acts against them.

Since smart grids are hardly dependent on the communication network, we can assume that this channel
will be reliable enough and focus our efforts on the distributed storage architecture. Therefore, our goal is to
implement such a policy that in case of a node failure, the global system could still behave properly. In this
case, we assume that any site may fail according to the crash model [12].

If a server started behaving in an arbitrary manner (also referred to as byzantine model), it would be either
because it is returning or propagating an arbitrary or older (though valid) version of a variable. We control this
by adding a digest to the value stored, similar to what it has been proposed in [9, 28]. Whenever we found a
mismatch between them we would force the replica to shut down.

Regarding our proposal, there may exist two different failure cases. The first one corresponds to the failure
of a primary (i.e., P11 in Fig. 3.1) and the second one to the failure of a pseudo-primary (i.e., PP23 in Fig.



358 Joan Navarro et al.

3.1). In the former, we inherit the advantages of the active replication techniques and are able to recover easily:
when the primary master fails (e.g., P11 in Fig. 3.1), any other primary-slave can immediately take over the
situation. Recall that due to eager replication, they are completely sharing the state of the primary master.

In the latter failure scenario, any of the nodes of the cluster where the failure takes place can become the
new pseudo-primary and continue with data transmission and replication. Unfortunately, due to the fact that
pseudo-primaries perform passive and lazy replication, the takeover process is not as fast as in the primary’s
cluster. As soon as the ancestor, belonging to cluster A, of the failed node, belonging to cluster B, detects
its unresponsiveness, it will select a new pseudo-primary from cluster B. If no more pseudo-primaries (or
secondaries) are available (i.e., cluster 7 in Fig. 3.1) it will send a message to the computation unit informing
that it is the last device of the replication chain. Otherwise, thanks to the neighbor discovery function, it can
easily find its successor in the replication tree and continue with the replication of the data in the system.

The challenge here is that the takeover solution in a pseudo-primary implies that the previous versions of
a given data item are lost. We have to define a state transfer protocol so that every cluster contains the most
complete and up-to-date information. Otherwise, there might exist certain network clusters where we cannot
achieve the desired degree of consistency due to the fact that these new pseudo-primaries do not completely
store the state. In Section 5, we will deal with this data transfer that can range from a full state transfer to
nothing sent. In all this range, we are going to see the advantages and disadvantages of each solution.

However, this is not enough since most of these processes do not completely stop forever after their failure.
This system has certain dynamism, in the sense that components can be repaired. Hence, there can be a role
re-assignment and the need of recovery tasks for previously crashed nodes.

The following subsection proposes an analytical study of the scale out factor of our protocol in order to
provide with some arguments to warrant the viability of our approach.

3.5. Proof of concept. As one of the major goals of our proposal is achieving high scalability, we use the
analytical model and notation from [31] which estimates the scale out factor in a replicated database system
when there is an increase of the number of sites and replicas. Thus, we briefly describe the adaption to our
system model used to proceed with the computation of the scale out factor.

The scale out factor determines how the performance of the global system is increased or decreased by using
replication. As shown in Equation 3.1, this is computed as the sum of work executed at each replica divided by
the processing capacity of a non-replicated database.

Scale Out =
1

C

n
∑

i=1

m
∑

j=1

C · Uij ·ACCij [31]. (3.1)

From the previous equation, we have that C is the processing capacity of a non-replicated database, n is
the number of replicas in our smart grid, m is the number of stored objects, Uij defines the location of object j
at site i and ACCij defines the accessibility of object j at site i. Hence, if the object j is at site i, then Uij = 1
which defines the replication schema. Actually, ACCij defines the access rate to object j at site i.

However, Equation 3.1 assumes that read and update operations launched against the replicated distributed
system are uniformly spread across all replicas. Hence, this equation is not directly applicable to our proposal
because our solution has an in-built load balancing mechanism which redirects operations to replicas according
to the required consistency level k. Thus, we show how we have adapted the analytical description of the
replicated system to fit in our system characteristics.

Recall that the term (C · UijACCij) is equivalent to (Cr · ACCRij + Cu · ACCUij) where Cr is the read
processing capacity, Cu is the update processing capacity, ACCRij is the read accessibility and ACCUij is the
update accessibility. So, replacing this expression in Equation 3.1 we obtain Equation 3.2 which is now useful
in our replication protocol.

Scale Out =
1

C

n
∑

i=1

m
∑

j=1

Cr ·ACCRij + Cu · ACCUij . (3.2)

Actually, Equation 3.1 can be considered a generalization of 3.2. We now evaluate the different replication
strategies for a system from 10 to 80 sites, 10 objects, 80% of read operations and 20% of write operations to



An Adaptive and Scalable Replication Protocol on Power Smart Grids 359

Table 3.1: Scale out evaluation

Sites Full Replication Partial Replication Smart Grid

0 0 0 0
10 10 9,8 9,82
20 15,7 16,9 18,15
40 25 28,2 30,7
80 40 48,2 53

all objects. The distribution of objects and the operations on objects are evenly distributed. We also assume
that all sites have the same processing capacity (i.e. all smart meters have similar specifications and storage
capabilities).

We have compared the scale out factor obtained in our proposed protocol against the replication strategies
proposed in [31]: (1) full replication—all sites contain the same data—and (2) partial replication —a reduced
set of sites contains a given data. In the case of the latter, we have chosen to replicate each data item in n/2
sites in order to obtain comparative results. The scale out evaluation of these protocols is shown in Table 3.1.

Ideally, the scale out factor should be equal to the number of sites of the system which meant that all
incoming updates are being processed without saturation. We can see that with a full replication scheme the
scale out is quite poor: 40 with 80 sites. When the number of sites increases, the system cannot scale anymore
as the full replication policy forces that all updates have to be sent to all replicas which takes a considerable
amount of time.

In contrast, with the partial replication (limited to half of the replicas) the system scales slightly better
because the cost of propagating the replicas is not so high (scale out of 48, 2 with 80 sites). Finally, our cloud
based replication protocol scales out is even better (53 at 80 sites). In this case the replicas that have the
most recent data version have a higher Cu and lower ACCRij because most read operations are executed in
replicas that do not have necessary the last version of the data. For these reasons, we show that the scale out is
better than traditional full replication and partial database replication protocols. This proof of concept makes
us believe that this is a good approach in power smart grids.

This subsection finishes the description of our proposal. In the following section, we roughly verify the
correctness properties of this system if all nodes behave properly and faults never occur.

4. Correctness Guarantees. This section provides arguments for correctness of the global distributed
system in a failure free environment. Distributed algorithms are said to be formally correct when their liveness
and safety properties are satisfied and shown to be correct. Regarding the liveness property, it can be best seen
as something good will eventually happen; while, the safety property can be stated as nothing bad will happen.

Our proposal needs to propagate the measures from a given smart meter from zone to zone up to its
replication level; hence, changes need to get propagated and applied in the same order in all pseudo-primaries.
Both asserts constitute the liveness and safety properties of our system.

Next, we point out some guarantees of the system extracted from the previous sections in order to have
enough arguments to warrant the correctness properties.

Guarantee 1. Any primary (or pseudo-primary) will never send the same data item to more than one device
per neighboring cluster.
This is guaranteed since data ancestors are excluded from the device’s neighbor list as shown in step
III.2 in Fig. 3.2.

Guarantee 2. The computation unit knows which is the last pseudo-primary (or secondary) of the replica-
tion chain.
As described in section 3.2, when a device notices that a new data item has gone through all its
replication depth (r = 0), it will send a message to the computation unit identifying itself.

Guarantee 3. Any device belonging to a master cluster has always the latest version of data generated by
any smart meter within that cluster.
This is satisfied since data is eagerly replicated to all devices of the master cluster as shown in steps
I.1 and II.1 in Fig. 3.2.

From this guarantees, we can state the safety and liveness properties of our system. As the system behaves



360 Joan Navarro et al.

different depending if it is replicating data (also referred to as write) or executing a query from the computation
unit (also referred to as read), both properties (safety and liveness) must be analyzed in two facets: read and
write.

4.1. Safety Properties. The safety properties of our architecture are stated by the following claims:
Claim 1. Safety on write. Safety on write operations is guaranteed since there will never occur a situation

where the same data is being written from two or more different sources.
This is guaranteed since (1) there is only one smart meterd generating datad, (2) point to point com-
munication channels do not disorder messages, and (3) the neighbor function will never find more than
one device per cluster as stated in Guarantee 1.

Claim 2. Safety on read. There will always exist a consistent version of the requested data item queried
by the computation unit.
This is assured provided that the replication protocol (Fig. 3.2) guarantees consistent writes throughout
the whole replication chain.

4.2. Liveness Properties. The liveness properties of our architecture are stated by the following claims:
Claim 3. Liveness on write. Liveness on data updates is trivially assured by Guarantee 1.

Data generated on the smart meter will follow the replication chain and being consistently written at
each device until the replication depth reaches a value of 0 or there are no more neighbors.

Claim 4. Liveness on read. Liveness on data reads is guaranteed provided that Claim 2 is accomplished.
The computation unit will always send queries to the last device of the replication chain. If data
contained in it have not the required consistency level k, the device will redirect the query to its
ancestor. This will happen in a recursive way until the required level k is found. If any device can
reach the required level k the primary will give back with its latest version which is strongly consistent
as provided by Guarantee 3.

Finally, in the following section we discuss some limitations of our approach.

5. Discussion. As shown in the previous sections, our proposal takes benefit from many techniques used
in distributed systems. However, to the best of our knowledge, these techniques have never been put together
nor tested. Hence, there are several aspects that have been intentionally left out and need to be discussed:

Master cluster reduction. Not all the members of the master region have to participate on active
replication. Along this work, we have assumed that all nodes of a given primary cluster participate in the
active replication of all data. In fact, this is not necessary at all: although the number of nodes belonging to
a zone can be in the range of tens, we think that we can speed up the replication process by selecting a set of
representatives for each subset of smart meters. It is well known that active replication does not scale well [35]
and with the proper selection of representatives the rest can become secondaries of each representative.

Enhancing the takeover process. A pseudo-primary (PP ) could do active replication within its associ-
ated cluster. This role is not an exclusive one in the cluster, it can be also responsible for several smart meters
and, thus, collaborate in the active replication protocol.

Failure detection. In Section 3.4 we have stated that the ancestor detects the failure of its successor in the
replication hierarchy; this can be achieved by implementing a timeout plicy. However, the update propagation
frequency may vary since data to be transmitted is very different (i.e., monthly power consumption is less
frequent than voltage monitoring at a given point in the network).

Hence, it makes sense to think that inside the cluster of a given pseudo-primary (or secondary) the active
replication among their nodes would detect the failure of the pseudo-primary (or another device). If so, they
can agree with selecting a new pseudo primary in that cluster and notify the ancestor about this fact. Again,
we have to reconstruct the new hierarchy tree in order to add the new pseudo-primary. However, this would
overload the pseudo-primaries’ clusters and might worsen the global performance of the system.

State transfer in presence of faults. It is said, that when a pseudo-primary fails we need to transfer its
data (missing data) to the new pseudo-primary as its copy is lost once it fails. We can have several alternatives
to mitigate this effect as this system is derived from a data driven application.

On one hand, we can perform an active replication of each pseudo-primary in its cluster zone. As mentioned
in the previous point, this approach might not be feasible since we increase the load of the system as we go
deep in the replication structure of the system, which potentially may flood the whole network; leading with a
not desirable situation. Note that this solution does not need to transfer any state information from anywhere
in case of fault.



An Adaptive and Scalable Replication Protocol on Power Smart Grids 361

On the other hand, we have the alternative to transfer the full state to the new successor from the ancestor
(recall that it belongs to another cluster and this could be costly); however, this alternative has several draw-
backs. The first one is that it might affect the availability of the system since transferring the whole data may
affect the transmission of new data to the successors. The second one is that the volume to transfer might be
so big that it could not catch up with the current state of the system [32].

There may exist an hybrid solution: we could perform a partial state transfer of data. This implies that the
replication algorithm has to ensure that each pseudo primary has a set of secondaries in its associated cluster
where the updates get also propagated asynchronously. Therefore, when a given pseudo-primary fails, it is only
needed to transfer a much less amount of data to the new pseudo-primary than in the case of full state transfer.
Nevertheless, this has to be tested and checked in order to find out the proper number of pseudo-primary slaves
and the amount of data transferred per round.

Distributed computing. Our proposed architecture allows to perform distributed computation on the
read steps. Thanks to the fact that required data travel across the replication chain (depending on the required
consistency level k) each node might be able perform a piece of the computation required.

Actually, as suggested in [14] for cloud computing environments, with our architecture it would be possible
to implement something similar to MapReduce; where the node owning the required data version run the
map tasks and the rest of nodes in the replication chain continuously run the reduce tasks. Such distributed
computation not only might reduce the size of the traveling data but also improve the computation throughput
of the smart grid.

However, we have not considered this feature in this work but it can be seen as a chance to improve the
intelligence and power of the system.

Dynamic replication depth tuning. We believe that if we were able to dynamically adjust this value
our system might adapt better to their requirements. In fact, we have not specifically stated how the replication
depth is set, neither augmented or decreased. It can be adjusted by the system administrator but it can also
be dynamically adjusted as a function of the demands coming from the computation unit. Moreover, it can
be tuned autonomously in case of disaster or rapid evaluation of certain functions (e.g. accounting). Further,
there might exist certain information that would need to be replicated in all nodes as it is rarely modified.

To this end, we are thinking about a cognitive system [18] based on supervised learning in order to (1)
evaluate the whole system status and (2) predict the optimal value of the replication depth for each data item.
Actually, we are implementing a learning classifier system (e.g., XCS or UCS) [37] able to adapt itself to the
system dynamism due its online nature.

6. Conclusions and Future Work. This paper presents a novelty approach to take advantage of smart
electric grids. We have defined a way to distribute and store information across the network so that the
computation needed for certain smart functions can be greatly reduced. We have detailed the replication
protocol based on epidemic updates and proofed its correctness. This work aims to provide some insight into
the world of smart grids from a data perspective. For the sake of simplicity during the presentation of our
system, we have outlined simple scenarios about the replication policy or fault-tolerance issues that need to be
treated in detail in further works.

In addition, future work should be targeted at (1) implementing the architecture in a real-world scenario
to obtain numerical values of its performance, and (2) defining the cognitive system behavior in order to tune
and optimize the replication protocol according to real data access and update patterns.

REFERENCES

[1] AEP Ohio. About the gridsmart project, Feb 2011. Available in: www.aepohio.com/save/demoproject/about/Default.aspx.
[2] Marcos Kawazoe Aguilera and et al. Sinfonia: A new paradigm for building scalable distributed systems. ACM Trans.

Comput. Syst., 27(3), 2009.
[3] Yair Amir and Ciprian Tutu. From total order to database replication. In ICDCS, pages 494–, 2002.
[4] José Enrique Armendáriz-Iñigo, J. R. Juárez-Rodŕıguez, José Ramón González de Mend́ıvil, Hendrik Decker, and Francesc D.

Muñoz-Escóı. k-bound GSI: a flexible database replication protocol. In Yookun Cho, Roger L. Wainwright, Hisham
Haddad, Sung Y. Shin, and Yong Wan Koo, editors, SAC, pages 556–560. ACM, 2007.

[5] Philip A. Bernstein and et al. Concurrency Control and Recovery in Database Systems. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1987.

[6] Irina Botan and et al. Secret: A model for analysis of the execution semantics of stream processing systems. PVLDB,
3(1):232–243, 2010.

[7] Eric A. Brewer. Towards robust distributed systems. In PODC Conf., NY, USA, 2000. ACM.



362 Joan Navarro et al.

[8] Richard E. Brown. Impact of Smart Grid on distribution system design. In Power and Energy Society General Meeting -
Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE, pages 1–4, 2008.

[9] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive recovery. ACM Trans. Comput. Syst.,
20(4):398–461, 2002.

[10] A. Chuang and M. McGranaghan. Functions of a local controller to coordinate distributed resources in a smart grid. In
Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 2008
IEEE, pages 1 –6, 2008.

[11] Brian F. Cooper and et al. Pnuts: Yahoo!’s hosted data serving platform. PVLDB, 1(2):1277–1288, 2008.
[12] Flaviu Cristian. Understanding fault-tolerant distributed systems. Commun. ACM, 34(2):56–78, 1991.
[13] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. Elastras: An elastic transactional data store in the cloud. CoRR,

abs/1008.3751, 2010.
[14] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: a flexible data processing tool. Commun. ACM, 53(1):72–77, 2010.
[15] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin, Swami-

nathan Sivasubramanian, Peter Vosshall, and Werner Vogels. Dynamo: amazon’s highly available key-value store. In
SOSP, pages 205–220, 2007.

[16] Lukasz Golab and Theodore Johnson. Consistency in a Stream Warehouse. In CIDR, 2011.
[17] Jim Gray and et al. The dangers of replication and a solution. In H. V. Jagadish and Inderpal Singh Mumick, editors,

Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, Montreal, Quebec, Canada,
June 4-6, 1996, pages 173–182. ACM Press, 1996.

[18] J. Holland. Adaptation in natural and artificial systems. The MIT Press, second edition, 1992.
[19] Ricardo Jiménez-Peris, Marta Patiño-Mart́ınez, Bettina Kemme, and Gustavo Alonso. Improving the scalability of fault-

tolerant database clusters. In ICDCS, pages 477–484, 2002.
[20] Tatjana Kostic, Otto Preiss, and Christian Frei. Understanding and using the iec 61850: a case for meta-modelling. Computer

Standards & Interfaces, 27(6):679–695, 2005.
[21] Konstantinos Krikellas, Sameh Elnikety, Zografoula Vagena, and Orion Hodson. Strongly consistent replication for a bargain.

In ICDE, pages 52–63, 2010.
[22] Lakshman, Avinash and Malik, Prashant. Cassandra: a decentralized structured storage system. SIGOPS Operating Systems

Review, 44(2), Apr 2010.
[23] Masdar. Masdar website, Feb 2011. Available in: www.masdar.ae/en/home/index.aspx.
[24] mThink. The smart grid in malta, Feb 2011. Available in: mthink.com/utilities/utilities/smart-grid-malta.
[25] Mayur R. Palankar, Adriana Iamnitchi, Matei Ripeanu, and Simson Garfinkel. Amazon s3 for science grids: a viable solution?

In DADC ’08: Proceedings of the 2008 international workshop on Data-aware distributed computing, pages 55–64, New
York, NY, USA, 2008. ACM.

[26] Marta Patiño-Mart́ınez, Ricardo Jiménez-Peris, Bettina Kemme, and Gustavo Alonso. Middle-r: Consistent database repli-
cation at the middleware level. ACM Trans. Comput. Syst., 23(4):375–423, 2005.

[27] Alberto Paz, Francisco Perez-Sorrosal, Marta Patiño-Mart́ınez, and Ricardo Jiménez-Peris. Scalability evaluation of the
replication support of jonas, an industrial j2ee application server. In EDCC, pages 55–60. IEEE Computer Society, 2010.

[28] Fernando Pedone, Nicolas Schiper, and José Enrique Armendáriz-Iñigo. Byzantine fault-tolerant deferred update replication.
In LADC, pages 7–16. IEEE Computer Society, 2011.

[29] Fernando Pedone, Matthias Wiesmann, André Schiper, Bettina Kemme, and Gustavo Alonso. Understanding replication in
databases and distributed systems. In ICDCS, pages 464–474, 2000.

[30] Christian Plattner, Andreas Wapf, and Gustavo Alonso. Searching in time. In SIGMOD Conference, pages 754–756, 2006.
[31] Damián Serrano, Marta Patiño-Mart́ınez, Ricardo Jiménez-Peris, and Bettina Kemme. Boosting database replication scal-

ability through partial replication and 1-copy-snapshot-isolation. Pacific rim international symposium on dependable
computing, IEEE, 0:290–297, 2007.

[32] Ricardo Manuel Pereira Vilaça, José Orlando Pereira, Rui Carlos Oliveira, José Enrique Armendáriz-Iñigo, and José
Ramón González de Mend́ıvil. On the cost of database clusters reconfiguration. In SRDS, pages 259–267, 2009.

[33] Werner Vogels. Eventually consistent. Commun. ACM, 52(1):40–44, 2009.
[34] White, Tom. Hadoop: The Definitive Guide. O’Reilly Media, 1 edition, June 2009.
[35] Matthias Wiesmann and André Schiper. Comparison of database replication techniques based on total order broadcast. IEEE

Trans. Knowl. Data Eng., 17(4):551–566, 2005.
[36] Matthias Wiesmann, André Schiper, Fernando Pedone, Bettina Kemme, and Gustavo Alonso. Database replication techniques:

A three parameter classification. In SRDS, pages 206–215, 2000.
[37] S. Wilson. Classifier fitness based on accuracy. Technical report, The Rowland Institute for Science, 100 Edwin H. Land Blvd.

Cambridge, MA 02142, Apr 1995.

Edited by: Dana Petcu and Jose Luis Vazquez-Poletti
Received: August 1, 2011
Accepted: August 31, 2011



Scalable Computing: Practice and Experience

Volume 12, Number 3, pp. 363–369. http://www.scpe.org
ISSN 1895-1767
c© 2011 SCPE

A HYBRID FIREFLY-INSPIRED APPROACH FOR OPTIMAL SEMANTIC WEB SERVICE

COMPOSITION

CRISTINA BIANCA POP, VIORICA ROZINA CHIFU, IOAN SALOMIE, RAMONA BIANCA BAICO, MIHAELA

DINSOREANU, GEORGIANA COPIL ∗

Abstract. Inspired from biology, in this paper we propose a hybrid firefly method for selecting the optimal solution in semantic
Web service composition. In our approach, the search space of the selection method is represented by an Enhanced Planning Graph
structure which encodes all the Web service composition solutions for a given user request. As selection criteria we have considered
the QoS attributes of the services involved in the composition as well as the semantic similarity between them. For the evaluation
of the proposed selection method we have implemented an experimental prototype and carried out experiments on a scenario from
the trip planning domain.

Key words: semantic Web service composition, firefly-based search, genetic operators, QoS, semantic similarity

AMS subject classifications.

1. Introduction and Related Work. The selection of the optimal solution in semantic Web service
composition can be seen as an optimization problem which requires specific selection techniques that provide the
desired results in an efficient way. Recent research studies demonstrated that principles inspired by the biological
systems have lead to the design of efficient techniques that can be used to solve optimization problems. These
biologically-inspired techniques are advantageous since they are capable of converging towards the optimal
or a near-optimal solution in a short time without processing the entire search space. Such meta-heuristics
include Genetic Algorithms, Ant Colony Optimization [3], Particle Swarm Optimization [5], or Artificial Immune
Systems [1]. These meta-heuristics have been successfully applied to the problem of selecting the optimal solution
in Web service composition.

In [8] genetic algorithms are used to find the optimal composition solution. The composition method is
based on a given service abstract workflow, where each abstract service has a set of concrete services with
different QoS values associated. Genetic algorithms are used to bind concrete services to the abstract ones
aiming at identifying the optimal workflow instance in terms of QoS attributes. The genome is encoded as
a binary string, where each position is associated to an abstract service in the workflow and indicates the
concrete service which is selected to be used. The approach uses genetic operators and fitness functions applied
on the genome to find the optimal composition solutions. The random mutation operator is used to generate
new workflow instances. In the case of fitness functions, the approach presented in [8] proposes three fitness
functions, one associated to each considered QoS attribute, in order to increase the probability of finding the
optimal composition solution.

In [11] a method based on Ant Colony Optimization has been proposed for selecting the optimal service
composition which uses the QoS attributes as selection criteria. The approach applies an ant-based selection
method on a composition graph, where the graph nodes represent abstract services having associated sets of
concrete services, while the edges denote the interactions between services. The QoS model defined in [11]
makes distinction between the QoS attributes that should be minimized or maximized. In addition, the multi-
pheromone concept is introduced for representing the QoS attributes.

A hybrid method combining Particle Swarm Optimization (PSO) [5] with Simmulated Annealing is proposed
in [4] for selecting the optimal or a near-optimal service composition solution based on QoS attributes. Authors
model service composition using an abstract workflow on which concrete services are mapped. A composition
solution is considered as the position of a particle in PSO, while velocity is used to modify a composition
solution. To avoid the problem of premature stagnation in a local optimal solution, a Simmulated Annealing-
based strategy is introduced which produces new composition solutions by randomly perturbing an initial
solution.

In [9], an immune-inspired selection algorithm is proposed in the context of Web service composition. The
approach uses an abstract composition plan which is mapped to concrete services, obtaining in this way a graph
structure having services in the nodes and QoS values on the arcs. The immune-inspired algorithm is applied

∗Department of Computer Science, Technical University of Cluj-Napoca, 26-28 Baritiu str., Cluj-Napoca, Romania,
({Cristina.Pop, Viorica.Chifu, Ioan.Salomie}@cs.utcluj.ro).

363



364 C. B. Pop et al.

to select the optimal composition solution based on QoS attributes. A composition solution is encoded using a
binary string and a mutation operator is used to generate new composition solutions.

In this paper we present a hybrid method for selecting the optimal composition solution that combines
an extended version [6] of the Firefly Search algorithm [10] with genetic operators. The search space for the
hybrid method is represented by an Enhanced Planning Graph (EPG) which encodes all the service composition
solutions for a given user request. In our approach, a user request is described in terms of functional and non-
functional requirements. To identify the optimal solution encoded in the EPG, we define a fitness function
which uses the QoS attributes and the semantic quality of the services involved in composition as selection
criteria. The proposed selection method was tested on a scenario from the trip planning domain.

The paper is structured as follows. Section 2 presents the formal model for representing semantic Web
service composition. Section 3 details the Hybrid Firefly method for selecting the optimal solution in Web
service composition. Section 4 presents the performance evaluation of the proposed selection method. We end
our paper with conclusions.

2. Semantic Web Service Composition Model. In our approach, Web service composition is modeled
using an Enhanced Planning Graph (EPG) structure [7]. This graph actually represents the search space of
the hybrid firefly selection method. The EPG is obtained by mapping the classical AI planning graph to the
semantic Web service composition domain and by adding new domain related structures to ease the service
composition representation and service selection. The construction of the EPG is an iterative process which
is applied at the semantic level by considering the ontology concepts that annotate the services functionality
and their input/output parameters. In each iteration, a new layer consisting of a tuple (Ai, Li) is added to the
graph where: (1) Ai contains clusters of services whose inputs are provided by the services from the previous
layers and (2) Li contains clusters of service parameters. A cluster of services groups services which provide
similar functionality, while a cluster of service parameters groups similar input and output parameters. The first
graph layer is represented by the tuple (A0, L0), where A0 is an empty set of service clusters and L0 contains
the user-provided input parameters. The construction of the EPG ends either when the user requested outputs
are contained in the current set of service parameters or when the graph reaches a fixed point. Reaching a
fixed point means that the sets of clusters of services and parameters are the same for the last two consecutive
generated layers.

A composition solution encoded in the EPG consists of a set of services, one from each cluster from each
EPG layer.

3. The Hybrid Firefly Selection Method. The hybrid method for selecting the optimal solution in
semantic Web service composition combines a firefly algorithm [6] with principles from evolutionary computing.
We have proposed such a hybrid method to maintain a good balance between exploration and exploitation thus
eliminating the problem of local optimum stagnation.

3.1. Problem Formalization. The firefly meta-heuristic relies on a set of artificial fireflies which commu-
nicate with each other to solve optimization problems. The behavior of artificial fireflies is modeled according
to the behavior of fireflies in nature, which search for a mating partner by emitting a flashing light. In this
section we present how we mapped the concepts of the firefly meta-heuristic to the problem of Web service
composition.

Just as the real fireflies search for a mating partner by means of flashing lights, we have a number of
artificial fireflies which search for the optimal service composition solution. Thus, we map the attraction
behavior of fireflies to the problem of selecting the optimal service composition as follows: (i) a firefly becomes
an artificial firefly, (ii) the position of a firefly becomes a service composition solution, (iii) the brightness of
a firefly becomes the quality of a composition solution evaluated with a multi-criteria fitness function, (iv) the
attractiveness between two fireflies becomes the similarity between two composition solutions, (v) the movement
of a firefly is mapped to a modification of the firefly’s current composition solution, (vi) the environment in
which fireflies fly is mapped to the EPG.

We formally define an artificial firefly as follows:

firefly = (sol, score) (3.1)

where sol is a service composition solution and score is the quality of sol.



A Hybrid Firefly-inspired Approach for Optimal Semantic Web Service Composition 365

A service composition solution is defined as:

sol = {solElem1, ..., solElemn} (3.2)

where (i) solElemi is a solution element composed of a set of services, one service from each cluster of layer i;
and (ii) n is the total number of layers in the EPG.

To evaluate the score of a composition solution, we define a fitness function QF which considers the QoS
attributes of the associated services as well as the semantic quality of the connections between these services:

QF (sol) =
wQoS ∗QoS(sol) + wSem ∗ Sem(sol)

(wQoS + wSem) ∗ |sol| (3.3)

where: (i) QoS(sol) citepop2010 is the QoS score of the composition solution sol; (ii) Sem(sol) [7] is the
semantic quality score of the solution sol; (iii) wQoS and wSem are the weights corresponding to user preference
related to the relevance of QoS and semantic quality.

3.2. The Hybrid Firefly Selection Algorithm. A prerequisite of the hybrid selection method is to
establish the number of fireflies that will be used in the search process so as to obtain the optimal solution in
a short time interval and without processing the entire search space. We have defined the number of fireflies
based on the total number of solutions encoded in the EPG:

noF = Round(
n
√
noSol) (3.4)

where: (i) noSol is the number of possible composition solutions encoded in the EPG; and (ii) n is a positive
integer determined experimentally.

The inputs of the selection algorithm (see Algorithm 1) are: (i) the EPG resulted from the Web service
composition process, (ii) the weights wQoS and wSem which state the relevance of a solution’s QoS quality
compared to its semantic quality, and (iii) a number noF (formula 3.4) of artificial fireflies used to search for
the best composition. The algorithm returns the optimal or a near-optimal composition solution.

Algorithm 3.2.1 Hybrid Firefly Web Service Selection

1 Input: EPG, wQoS , wSem, noF
2 Output: fSolbest
3 begin

4 FSOL = ∅
5 for i = 1 to noF do FSOL = FSOL ∪Gen Random Solution(EPG)
6 repeat

7 for i = 1 to noF do

8 for j = 1 to noF do

9 if (QF(FSOL[i]) < QF(FSOL[j])) then
10 r = Compute Distance(FSOL[i], FSOL[j])
11 FSOL[i] = Crossover(FSOL[i], FSOL[j], r)
12 u = Generate Random Vector(|FSOL[i]|)
13 FSOL[i] = Mutation(FSOL[i], u)
14 end if

15 end for

16 end for

17 fSolbest = Get Best Solution(FSOL)
18 SOLbest = SOLbest ∪ fSolbest
19 u = Generate Random Vector(|fSolbest|)
20 FSOL = Modify Best Firefly(FSOL, u)
21 until (Stopping Condition())
22 return Get Best Solution(SOLbest)
23 end

In the first step of the selection algorithm each firefly is associated with a randomly generated composition
solution (see line 5). These initial solutions are further improved in an iterative process which stops when the
best solution has been the same over the last noIt iterations (see line 21).



366 C. B. Pop et al.

In each iteration, if the score of the solution associated to a firefly is better than the score of the solution
associated to another firefly it means that the latter firefly will be attracted towards the first one and thus it
will have its solution improved. The steps for improving the solution associated to the less bright firefly are the
following:

1. The distance r between the two composition solutions is computed (see line 10) as the difference of
their scores.

2. A crossover operator is applied between the two composition solutions in a number of points depending
on the value of the distance r compared to three thresholds r1, r2, r3 (see line 11). As a result of the
crossover operation, two new solutions will be obtained and the one having the highest score according
to the QF function will be kept.

3. A mutation operation (see line 13) is performed on the best solution obtained within crossover to
introduce diversity. In the mutation process, a mutation vector is randomly generated (see line 12) to
specify the points where services will be replaced with other services from the same clusters.

After all solutions have been processed, the best one is determined (see line 17), added to the set of the
best composition solutions and then mutated (see line 20) according to a randomly generated mutation vector
(see line 19). This last mutation is performed to enlarge the search space and to avoid the stagnation in a local
optimal solution.

4. Performance Evaluation. To validate our selection approach we have implemented an experimental
framework which has been tested on a set of scenarios from the trip planning domain. First we performed a
series of experiments aiming to identify the optimal values of the selection method’s adjustable parameters.
Then, using the optimal configuration of the adjustable parameters we performed further tests to evaluate the
performance of the proposed method in contrast with a Bee-inspired selection method.

4.1. Experimental Framework. The architecture of the experimental framework is presented in Figure
4.1.

Fig. 4.1: The architecture of the experimental framework.

The ontology driven graphical user interface guides the users in the processes of searching and composing
Web services by providing a controlled language that uses the ontology concepts. The SWS Repository is a
repository of semantically annotated services based on the Domain Ontology. The Semantic UDDI extends
the classical UDDI structure by (i) storing semantic Web service descriptions and (ii) providing means to
semantically inquire the UDDI repository. The Discovery Engine receives a service request from a user or from
the Composition Engine. In the case of a user request, the Discovery Engine provides an ordered set of atomic
Web services which match the request. In the case of a service request from the Composition Engine, the
Discovery Engine provides a set of atomic Web services organized in clusters. To satisfy the service requests,



A Hybrid Firefly-inspired Approach for Optimal Semantic Web Service Composition 367

the Discovery Engine inquires the Semantic UDDI. The Composition Engine is the component responsible for
the construction of the EPG. The Composition Engine interacts with the Discovery Engine which provides the
appropriate service clusters. The EPG is then used by the Firefly-based selection engine which provides the
optimal or a near optimal composition solution according to the user preferences.

4.2. Setting the Optimal Values of the Adjustable Parameters. The framework has been tested
on a scenario (see in Table 4.1 the associated user request) from the trip planning domain for which the EPG is
organized on 3 layers consisting of 51 services grouped in 11 clusters. This EPG encodes 13996800 composition
solutions.

Table 4.1: User request for planning a holiday

User inputs Requested outputs QoS weights Semantic
quality weight

SourceCity, AccomodationInvoice, Total QoS = 0.55, 0.35
DestinationCity, FlightInvoice, Availability = 0.30,
StartDate, EndDate, CarInvoice Reliability = 0.30,
HotelType, Cost = 0.15,
NumberOfPersons, Response time = 0.25
NumberOfRooms,
CarType,
ActivityType

To identify the optimal values of the selection method’s adjustable parameters (the number of stagnations,
noS, the three thresholds, r1, r2 and r3, for computing the number of crossover points) we have performed
100 runs of the associated selection algorithm for each configuration and analyzed how the average number
of processed solutions (noSolGenavg), the average simulation time (tExecavg), and the standard deviation
(stDevavg) are affected. Table 4.2 presents the average values obtained for each configuration considered.

Table 4.2: Tests summary for the Hybrid Firefly Algorithm

# noS r1 r2 r3 noSolGenavg tExecavg stDevavg

1 3 0.001 0.005 0.01 2103 8 0.0084

2 3 0.003 0.006 0.008 2186 9 0.0089

3 3 0.03 0.06 0.09 2146 8 0.0126

4 3 0.01 0.05 0.099 2192 8 0.0111

5 6 0.001 0.005 0.01 2145 9 0.0076

6 6 0.003 0.006 0.008 2120 9 0.0089

7 6 0.03 0.06 0.09 2119 8 0.0089

8 6 0.01 0.05 0.099 2098 7 0.0111

9 9 0.001 0.005 0.01 2079 8 0.0098

10 9 0.003 0.006 0.008 2079 8 0.0107

11 9 0.03 0.06 0.09 2070 8 0.0125

12 9 0.01 0.05 0.099 2140 8 0.0108

When choosing the final values of the adjustable parameters a tradeoff between obtaining the optimal
solution and a very low execution time has to be considered. By analyzing the results from Table 4.2 it can
be noticed that the smallest average execution time, 7 seconds, corresponds to a standard deviation of the



368 C. B. Pop et al.

identified optimal solution of 0.0111, but for a standard deviation of 0.0076, which is the smallest one, the
average execution can get up to 9 seconds.

By analyzing the experimental results we conclude that the Hybrid Firefly selection algorithm returns
the optimal or a near-optimal solution (the average standard deviation is 0.089) on average in 8 seconds by
processing around 0.015% of the search space.

4.3. Comparative Analysis. To assess the performance of the Hybrid Firefly selection algorithm we have
compared it with a Bee-inspired selection algorithm we previously introduced in [2]. The two selection algorithms
have been comparatively evaluated according to the following criteria: the average number of processed solutions,
the average simulation time, and the standard deviation of the score of the best solution returned by the
algorithm related to the score of the global optimal composition solution for the considered scenario.

For each algorithm we performed the same number of simulations on the same scenario and on the same
machine. In Table 4.3 we summarize the experimental results obtained for the two selection algorithms taking
into consideration the optimal values of their adjustable parameters.

By analyzing the experimental results we conclude that the Hybrid Firefly algorithm outperforms the Bee-
inspired algorithm in terms of number of processed solutions and executon time, but in terms of standard
deviation it provides slightly higher values which are acceptable.

Table 4.3: Comparative analysis between the Hybrid Firefly Selection Algorithm and the Bee-inspired Selection
Algorithm

Method Average number of
processed solutions

Average execution time Average standard de-
viation

Hybrid Firefly 2145 9 0.007

Bee-inspired 2867 13 0.002

5. Conclusions and Future Work. This paper proposed a firefly-inspired method for selecting the
optimal or a near optimal solution in semantic Web service composition. The selection method has been
applied on Enhanced Planning Graph which encodes the set of composition solutions for a given user request.
By combining the firefly-based selection approach with genetic operators we ensure a good balance between
exploration and exploitation thus avoiding the problem of stagnation in a local optimum. To demonstrate the
feasibility of our approach, we have implemented an experimental prototype which has been tested on a scenario
from the trip planning domain. To assess the performance of the Hybrid Firefly method we have compared it
with a Bee-inspired selection method.

REFERENCES

[1] L. N. Castro and F. von Zuben, Learning and Optimization using the Clonal Selection Principle, IEEE Transactions on
Evolutionary Computation, Volume 6, Issue 3, pp. 239-251, 2002.

[2] V. R. Chifu, C. B. Pop, I. Salomie, M. Dinsoreanu, A. N. Niculici and D. S. Suia, Selecting the Optimal Web Ser-
vice Composition based on a Multi-criteria Bee-inspired Method, Proceedings of the 12th International Conference on
Information Integration and Web-based Applications & Services, pp. 40-47, 2010.

[3] M. Dorigo, M. Birattari, and T. Stutzle, Ant Colony Optimization - Artificial Ants as a Computational Intelligence
Technique, IEEE Computational Intelligence Magazine, 1(4), pp. 28-39, 2006.

[4] X. Fan and X. Fang, On Optimal Decision for QoS-Aware Composite Service Selection, Information Technology Journal,
Volume 9, Issue 6, pp. 1207-1211, 2010.

[5] J. Kennedy, and R. Eberhart, Particle swarm optimization, Proceedings of the IEEE International Conference on Neural
Networks, pp. 1942-1948, 1995.

[6] S. Lukasik and S. Zak, Firefly Algorithm for Continuous Constrained Optimization Tasks, Computational Collective Intelli-
gence. Semantic Web, Social Networks and Multiagent Systems, LNCS vol. 5796, pp. 97-106, 2009.

[7] C. B. Pop,V. R. Chifu, I. Salomie, and M. Dinsoreanu, Immune-Inspired Method for Selecting the Optimal Solution in
Web Service Composition, LNCS, vol. 6162, pp. 1-17, 2010.

[8] J. Wang and Y. Hou, Optimal Web Service Selection based on Multi-Objective Genetic Algorithm, Proceedings of the Inter-
national Symposium on Computational Intelligence and Design - Volume 01, pp. 553-556, 2008.

[9] J. Xu and S. Reiff-Marganiec, Towards Heuristic Web Services Composition Using Immune Algorithm, Proceedings of the
International Conference on Web Services, pp. 238-245, 2008.



A Hybrid Firefly-inspired Approach for Optimal Semantic Web Service Composition 369

[10] X.S. Yang, Nature-Inspired Metaheuristic Algorithms, Luniver Press, 2008.
[11] W. Zhang, C. K. Chang, T. Feng and H. Jiang, QoS-based Dynamic Web Service Composition with Ant Colony Optimiza-

tion, Proceedings of the 34th Annual IEEE Computer Software and Applications Conference, pp. 493-502, 2010.

Edited by: Dana Petcu and Jose Luis Vazquez-Poletti
Received: August 1, 2011
Accepted: August 31, 2011





Scalable Computing: Practice and Experience

Volume 12, Number 3, pp. 371–374. http://www.scpe.org
ISSN 1895-1767
c© 2011 SCPE

ABSTRACTION LAYER FOR CLOUD COMPUTING∗

BINH MINH NGUYEN, VIET TRAN AND LADISLAV HLUCHY†

Abstract. In this paper, we will present an abstraction layer for cloud computing. The abstraction layer will allow users to
manipulate virtual machines as objects and simplify the process of porting applications to cloud computing. This approach could
improve the flexibility of cloud computing, enable interoperability and simplify the creation of more complex systems in the cloud.

Key words: abstraction, cloud computing, object-oriented programming

1. Introduction. In the recent years, cloud computing has become an attractive option for scientific
communities as well for industry. The illusion of unlimited resources that are available immediately at users’
request, as well as the flexibility, elasticity, reliability that cloud computing offers, are really interesting for short-
term testing and development, as well as for long-term flexible infrastructures. More and more institutions and
companies start to build private clouds as well as use public cloud offered by large providers.

As present, there are several large providers including Amazon, Microsoft, ElasticHosts, and so on. There
are also open-source cloud middleware for building clouds like Eucalyptus [1], OpenNebula [2], as well as
proprietary cloud software from VMWare, Citrix, IBM, and so on. Unfortunately, these softwares are often
incompatible from each other, that can increase the cost of porting applications to clouds as well as create
potential vendor lock-in. There are efforts to standardize cloud middleware, mostly notable by Open Grid
Forum [7] with OCCI [4] (Open Cloud Computing Interface).

In this paper, we present an abstraction layer for cloud computing. The abstraction layer could simplify the
creation and use of virtual machines in cloud, and also make interoperability between providers from the view
of users. The abstraction also enables opportunities for creating optimization layer (substituting, brokering)
between the abstraction layer and cloud middleware. At the moment, we primarily focus on IaaS (Infrastructure
as a Service) type of cloud computing, i.e. like Amazon EC2 [3], Microsoft Azure [6], OpenStack [5] and OCCI.

2. Overview of cloud interfaces. Basically, cloud interfaces can be divided into three categories: graph-
ical portals, command line clients and web services. Most of cloud middlewares offer two or all three kinds of
interfaces.

Command line clients are the most frequent clients and that offer every middleware. Basically, they of-
fer command for image management (upload/download images) and virtual machine management (create,
monitor, shutdown). For example for Amazon EC2 command line client [10], a command ”ec2-run-instances
ami-12345678 -k ec2-keypair” will create a virtual machine with image with ID ami-12345678 and keypair
named ec2-keypair. The command will return the machine ID that users can use for late manipulation with the
machine. If users want to connect to the machine, they first use command ”ec2-describe-instance” to find the
public IP address (or public machine name) of the virtual machine, then use SSH command to connect to the
machine using the IP address and the private key from the used key pair. Other middlewares like OpenNebula
or OpenStack have similar command line clients.

The graphical portals offer web-based graphical interfaces where users can choose parameters for each virtual
machine (types of machines, images, key pairs, network configuration), and control these virtual machines (start,
shutdown, monitor their status). These interfaces can also offer additional actions specific for each middleware,
e.g. attaching additional virtual disk, making images/snapshots of the running machines, migration, replication
and so on. The portals are suitable for learning and deploying simple systems, but for more complex actions,
they may require users to make a lot of mouse clicking. Web service interfaces are primarily used by developers.
For example, for creating a virtual machine via Amazon EC2 web service [8], users can send a request to the web
service with action and parameters like ”https://ec2.amazonaws.com/? Action=RunInstances&ImageId=ami-
12345678”. OGF [7] also define OCCI as RESTful web service [9], where parameters of actions are defined in
XML files. Command line clients practically use the web services for communication with servers.

∗This work is supported by projects DMM VMSP-P-0048-09, SMART II ITMS: 26240120029, VEGA 2/0184/10, VEGA No.
2/0211/09.

†Institute of Informatics, SAS, Dubravska cesta 9, Bratislava, Slovakia (minh.ui@savba.sk, viet.ui@savba.sk,

hluchy.ui@savba.sk).

371



372 B. M. Nguyen et al.

3. Design of abstraction layer. In this paper, we will present an abstraction layer for cloud computing.
The aims of the abstraction layer are as follows:

• Abstraction of cloud resources: resources in the clouds (virtual machines, images, storages) are ab-
stracted as objects and users can manipulate with them via methods provided by the objects. The
abstraction will allow changes in the backend without affecting functionalities and modification of de-
veloped applications in the abstraction layer.

• Abstraction of complex systems: via mechanism like inheritance, composition and polymorphisms,
developers can make abstraction of more complex systems with several components easily, and deploy
them with single click.

• Simplification of use interface: Users can manipulate resources as objects without dealing with imple-
mentation details.

• Interoperability: Applications and user scripts developed in the abstraction layer will work for different
cloud middleware from different providers.

• Optimization: The abstraction layer will allow optimization mechanisms like brokering, substitutions,
load balancing and so on. For example, when the user create a new virtual machine, the optimization
layer can choose which provider is best for the current instance.

In our design, we use object-oriented approach for abstraction of computing resources:
• The resource is represented as an object where all information related to the resource is encapsulated
as data member of the object.

• Manipulation with the resource will be done via member methods of the object. Assume that a virtual
machine in the cloud is represented by an object vm, then starting the machine is done by vm.start(),
uploading data/application code to the machine is done by vm.upload(data, destination), execution of
a program on the machine is done by vm.exec(command-line), and so on.

• Users can concretize and add more details to resource description using derived class and inheritance
in OOP. For example, a Cluster class is used for representation of generic cluster, a derived class
HadoopCluster can be used for abstraction of cluster with Hadoop software installed.

• Default values will be used whenever possible for quick learning. Sometime, the users just want to
create a virtual machine for running their applications, they do not care about concrete Linux flavor,
or which key pair should be used. The interface should not force users to specify every parameter even
if the users do not care about it.

• Abstraction also makes space for resource optimization. The optimization layer can decide which options
are best for users.

4. Examples.

4.1. Running applications on Clouds. We started with a simple example how to create a virtual
machine in the cloud and execute an application on the newly created machine. The commands look as follows:

t = Instance()

t.start()

t.upload("appdata.dat appcode.exe","")

t.run("appcode.exe -I appdata.dat -o result.dat")

t.download("result.dat", "")

t.shutdown()

t.delete()

As Python is a scripting language, users can choose if they will execute the commands one by one in
interactive mode of Python shell, or create a script from the commands. The command in the first line will create
an instance (a virtual machine) with default parameters (defined in configuration files or in the defaultInstance
variable). The users can customize the instance by adding parameters e.g. t = Instance(type=large) or even
more complex t = Instance (type=medium, image=myImage, keypair=myKeypair). If the users want to create
more instances with the similar parameters, they can set common parameters to defaultInstance. Note that the
instance is created without starting, so users can change parameters, e.g. t.setKeypair(public, private).

The next commands in the example will start the virtual machine, upload the application and its data,
execute the application on the virtual machine, download output data and terminate the machines. Users can
get information about the virtual machines simply by command print t. The information given by the command
is similar to the xxx-describe-instance in Amazon EC2 or Eucalyptus. As it is shown in the example above, users



Abstraction layer for cloud computing 373

do not have to deal with detailed information like IP address, SSH commands connection to the virtual machines
and so on. They simply upload data, run application or download data with simple, intuitive command like
t.upload(), t.run(), t.download() and so on. Of course, if the users really need to run its own SSH connection,
they can do it by information (IP address, SSH key) from the print t command.

Now we can go further in abstraction by creating a function runapp(inputdata, commandline, outputdata,
type=medium) from the commands. From this point, users can execute an application in the cloud only with
single command runapp() with input/output data and command line as parameters.

Note that the abstraction (like Instance class or runapp() command) does not only simplify the process of
using cloud computing, but also allows experts (e.g. IT support staff of institutes/companies) to do optimization
for users. The actual users of Cloud computing do not have to be IT professionals but may be scientists,
researchers, experts from other branches. For example, the IT staff can customize the virtual machines creation
by checking if there is free capacity in the private clouds first before going to public clouds.

4.2. Abstract object for clusters. In this section, we will demonstrate how to create a new abstract
object within our abstraction layer. We will define a new object for abstraction of clusters. The initialization
of the cluster look as follows:

class Cluster:

def _init_()

head = Instance()

for i in rang (1, N)

worker[i] = Instance()

def start()

head.start()

for i in rang (1, N)

worker[i].start()

config()

def config()

nodefile = nodefile + worker[i].privateIP

f = open(’/tmp/nodefile’, ’w’)

f.write(nodefile)

f.close()

head.upload(’/tmp/nodefile’, ’’);

def upload(source, dest)

head.upload(source, dest);

After defining the cluster object, users then can create a cluster and use them as follows:
t = Cluster()

t.start()

t.upload()

Of course, we can define derived classes from Cluster, e.g. PBSCluster, HadoopCluster, by modifying the
configuration method in the Cluster class config(). We can go further by create a abstract object ElasticPB-
SCluster, a cluster with PBS where worker nodes are dynamically added and removed according to the actual
loads of the PBS.

5. Conclusion. In the paper, we have presented an approach for abstraction of cloud computing. The
abstraction layer could improve the flexibility of cloud computing, enable interoperability and simplify the
creation of more complex systems in the cloud.

REFERENCES

[1] Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil Soman, Lamia Youseff, Dmitrii Zagorod-

nov, The Eucalyptus Open-Source Cloud-Computing System. In Proceedings of the 2009 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGRID ’09) pp. 124-131, IEEE Computer Society, Washington, DC,
USA.



374 B. M. Nguyen et al.

[2] Dejan Milojii, Ignacio M. Llorente, Ruben S. Montero, OpenNebula: A Cloud Management Tool. IEEE Internet Com-
puting, vol. 15, no. 2, pp. 11-14, 2011.

[3] Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.com/ec2/. Last visited on August 2011.
[4] Open Cloud Computing Interface. http://occi-wg.org/. Last visited on August 2011.
[5] OpenStack: Open source cloud computing software. http://openstack.org/. Last visited on August 2011.
[6] Windows Azure. http://www.microsoft.com/windowsazure/. Last visited on August 2011.
[7] Open Grid Forum. http://ogf.org/. Last visited on August 2011.
[8] Amazon Elastic Compute Cloud API Reference. http://docs.amazonwebservices.com/AWSEC2/2011-07-15/APIReference/.

Last visited on August 2011.
[9] Open Cloud Computing Interface - Infrastructure. http://www.gridforum.org/PublicCommentDocs/Documents/2010-

12/ogf draft occi infrastructure.pdf. Last visited on August 2011.
[10] Amazon Elastic Compute Cloud Command Line Reference. http://docs.amazonwebservices.com/AWSEC2/

latest/CommandLineReference/. Last visited on August 2011.

Edited by: Dana Petcu and Jose Luis Vazquez-Poletti
Received: August 1, 2011
Accepted: August 31, 2011



AIMS AND SCOPE

The area of scalable computing has matured and reached a point where new issues and trends require a pro-
fessional forum. SCPE will provide this avenue by publishing original refereed papers that address the present
as well as the future of parallel and distributed computing. The journal will focus on algorithm development,
implementation and execution on real-world parallel architectures, and application of parallel and distributed
computing to the solution of real-life problems. Of particular interest are:

Expressiveness:

• high level languages,
• object oriented techniques,
• compiler technology for parallel computing,
• implementation techniques and their effi-
ciency.

System engineering:

• programming environments,
• debugging tools,
• software libraries.

Performance:

• performance measurement: metrics, evalua-
tion, visualization,

• performance improvement: resource allocation
and scheduling, I/O, network throughput.

Applications:

• database,

• control systems,

• embedded systems,

• fault tolerance,

• industrial and business,

• real-time,

• scientific computing,

• visualization.

Future:

• limitations of current approaches,

• engineering trends and their consequences,

• novel parallel architectures.

Taking into account the extremely rapid pace of changes in the field SCPE is committed to fast turnaround
of papers and a short publication time of accepted papers.

INSTRUCTIONS FOR CONTRIBUTORS

Proposals of Special Issues should be submitted to the editor-in-chief.
The language of the journal is English. SCPE publishes three categories of papers: overview papers,

research papers and short communications. Electronic submissions are preferred. Overview papers and short
communications should be submitted to the editor-in-chief. Research papers should be submitted to the editor
whose research interests match the subject of the paper most closely. The list of editors’ research interests can
be found at the journal WWW site (http://www.scpe.org). Each paper appropriate to the journal will be
refereed by a minimum of two referees.

There is no a priori limit on the length of overview papers. Research papers should be limited to approx-
imately 20 pages, while short communications should not exceed 5 pages. A 50–100 word abstract should be
included.

Upon acceptance the authors will be asked to transfer copyright of the article to the publisher. The
authors will be required to prepare the text in LATEX2ε using the journal document class file (based on the
SIAM’s siamltex.clo document class, available at the journal WWW site). Figures must be prepared in
encapsulated PostScript and appropriately incorporated into the text. The bibliography should be formatted
using the SIAM convention. Detailed instructions for the Authors are available on the SCPE WWW site at
http://www.scpe.org.

Contributions are accepted for review on the understanding that the same work has not been published
and that it is not being considered for publication elsewhere. Technical reports can be submitted. Substantially
revised versions of papers published in not easily accessible conference proceedings can also be submitted. The
editor-in-chief should be notified at the time of submission and the author is responsible for obtaining the
necessary copyright releases for all copyrighted material.


